Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

  • 845 Accesses

Abstract

In this chapter, model-based control designs are developed for electric machines that are typically described by (i) electrical subsystem dynamics that include all of the relevant electrical effects, (ii) an algebraic torque coupling that represents the electrical to mechanical energy conversion, and (iii) mechanical subsystem dynamics that may include the rotor and position dependent load dynamics. A block diagram that illustrates the interconnection of these coupled nonlinear dynamics is given in Figure 3.1.

Block diagram for electric machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. B. Amor, O. Akhrif, L. A. Dessaint, and G. Oliver, “Adaptive Nonlinear Torque Control of a Switched Reluctance Motor,”Proceedings of the American Control Conference June1993, pp. 2831–2836.

    Google Scholar 

  2. P. Aquino, M. Feemster, D. Dawson, and A. Behal, “Adaptive Partial State Feedback Control of the Induction Motor: Elimination of Rotor Flux and Rotor Velocity Measurements,”International Journal of Adaptive Control and Signal ProcessingVol. 14, No. 2–3, 2000, pp. 83–108.

    Article  Google Scholar 

  3. S. Beale, B. Shafai, P. LaRocca, and E. Cusson, “Adaptive Forced Balancing for Multivariable Systems,”ASME Journal of Dynamic Systems, Measurement, and Control Vol.117, No. 4, Dec. 1995, pp. 496–502.

    Article  MATH  Google Scholar 

  4. A. Behal, M. Feemster, D. M. Dawson, and A. Mangal, “Partial State Feedback Control of Induction Motors with Magnetic Saturation: Elimination of Flux Measurements,”AutomaticaVol. 38, No. 2, Jan. 2002, pp. 191–203.

    Article  MATH  Google Scholar 

  5. A. Behal, M. Feemster, and D.M. Dawson, “An Improved Indirect Field Oriented Controller for the Induction Motor,”IEEE Transactions on Control Systems Technologyaccepted, to appear.

    Google Scholar 

  6. H. Bleuler, D. Vischer, G. Schweitzer, A. Traxler, and D. Zlatnik, “New Concepts for Cost-effective Magnetic Bearing Control,”AutomaticaVol. 30, No. 5, May 1994, pp. 871–876.

    Article  Google Scholar 

  7. B. Bose, Power Electronics and AC Drives, Englewood Cliffs, NJ: Prentice-Hall, 1986.

    Google Scholar 

  8. M. M. Bridges, D. M. Dawson, and J. Hu, “Adaptive Control for a Class of Direct Drive Robot Manipulators,”International Journal of Adaptive Control and Signal Processing Vol. 10No. 4–5, pp. 417–441.

    Google Scholar 

  9. M. M. Bridges, D. M. Dawson, and C. T. Abdallah, “Control of Rigid-Link Flexible-Joint Robots: A Survey of Backstepping Approaches,”Journal of Robotic SystemsVol. 12, No. 3, Mar. 1995, pp. 199–216.

    Article  MATH  Google Scholar 

  10. T. Burg, D. Dawson, and J. Hu, “Velocity Tracking Control for a Separately Excited DC Motor Without Velocity Measurements,”Proceedings of the American Control ConferenceBaltimore, MD, June 1994, pp. 1051–1056.

    Google Scholar 

  11. T. Burg, D. Dawson, J. Hu, and S. Lim, “An Adaptive Partial State Feedback Controller for RLED Robot Manipulators Actuated by BLDC Motors,”Proceedings of the IEEE Conference on Robotics and AutomationNagoya, Japan, May 1995, pp. 300–305.

    Google Scholar 

  12. J. J. Carroll, D. M. Dawson, and M. D. Leviner, “Adaptive Tracking Control of a Switched Reluctance Motor Turning an Inertial Load,”Proceedings of the American Control ConferenceJune 1993, pp. 670–674.

    Google Scholar 

  13. A. Charara and B. Caron, “Magnetic Bearing: Comparison Between Linear and Nonlinear Functioning,”Proceedings of the 3rd International Symposium on Magnetic BearingsAlexandria, VA, July 1992, pp. 451–460.

    Google Scholar 

  14. D. M. Dawson, J. Hu, and P. Vedagarbha“An Adaptive Controller for a Class of Induction Motor Systems,” Proceedings of the IEEE Conference on Decision and ControlNew Orleans, LA, Dec. 1995, pp. 1567–1572.

    Google Scholar 

  15. D. M. Dawson, J. Hu, and T. C. BurgNonlinear Control of Electric MachineryNew York, NY: Marcel Dekker, 1998.

    Google Scholar 

  16. C. Canudas De Wit, R. Ortega, and I. Mareels, “Indirect Field Oriented Control of Induction Motors is Robustly Globally Stable,”AutomaticaVol. 32. No. 10, Oct. 1996, pp. 1393–1402.

    Article  MathSciNet  Google Scholar 

  17. G. Espinoza-Perez and R. Ortega, “State Observers are Unnecessary for Induction Motor Control,”Systems and Control LettersVol. 23, No. 5, 1994, pp. 315–323.

    Article  MathSciNet  Google Scholar 

  18. J. Hu and D. Dawson, “Adaptive Control of Induction Motor Systems Despite Rotor Resistance Uncertainty,”AutomaticaVol. 32, No. 8, 1996, pp. 1127–1143.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Kailath, Linear Systems, Englewood Cliffs, NJ: Prentice-Hall, 1980.

    Google Scholar 

  20. C. Kim, I. Ha, H. Huh, and M. Ko, “A New Approach to Feedback Linearizing Control of Variable Reluctance Motors for Direct-Drive Applications,” Proceedings of the IECON, 1994.

    Google Scholar 

  21. R. Kohan and S. Bortoff, “Adaptive Control of Variable Reluctance Motors Using Spline Functions,” Proceedings of the IEEE Conference on Decision and Control, Lake Buena Vista, FL, 1994, pp. 1694–1699.

    Google Scholar 

  22. P. KrauseAnalysis of Electric MachineryNew York, NY: McGraw-Hill, 1986.

    Google Scholar 

  23. F. L. Lewis, C. T. Abdallah, and D. M. DawsonControl of Robot ManipulatorsNew York, NY: Macmillan Publishing Co., 1993.

    Google Scholar 

  24. M. S. Loffler, N. P. Costescu, and D. M. Dawson, “QMotor 3.0 and the QMotor Robotic Toolkit: A PC-Based Control Platform,”Control Systems MagazineVol. 22, No. 3, June 2002, pp. 12–26.

    Article  Google Scholar 

  25. R. Lozano and B. Brogliato, “Adaptive Control of Robot Manipulators with Flexible Joints,”IEEE Transactions on Automatic ControlVol. 37, No. 2, Feb. 1992, pp. 174–181.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Marino, S. Peresada, and P. Tomei, “Global Adaptive Output Feedback Control of Induction Motors with Uncertain Rotor Resistance,”IEEE Transactions on Automatic ControlVol. 44, No. 5, 1999, pp. 967–983.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Marino, S. Peresada, and P. Tomei, “Output Feedback Control of Current-Fed Induction Motors with Unknown Rotor Resistance,”IEEE Transactions on Control Systems TechnologyVol. 4, No. 4, July 1996, pp. 336–346.

    Article  Google Scholar 

  28. R. Marino, S. Peresada, and P. Valigi, “Exponentially Convergent Rotor Resistance Estimation for Induction Motors,”IEEE Transactions on Industrial ElectronicsVol. 42, No. 5, Oct. 1995, pp. 508–515.

    Article  Google Scholar 

  29. F. Matsumura and T. Yoshimoto, “System Modeling and Control Design of a Horizontal-Shaft Magnetic-Bearing System,”IEEE Transactions on MagneticsVol. MAG-22, No. 3, May 1986, pp. 196–203.

    Article  Google Scholar 

  30. A. M. Mohamed and F. P. Emad, “Conical Magnetic Bearings with Radial and Thrust Control,”IEEE Transactions on Automatic ControlVol. 37, No. 12, Dec. 1992, pp. 1859–1868.

    Article  MATH  Google Scholar 

  31. A. M. Mohamed and I. Busch-Vishniac, “Imbalance Compensation and Automatic Balancing in Magnetic Bearing Systems Using the Q-Parameterization Theory,”Proceedings of the American Control ConferenceBaltimore, MD, June 1994, pp. 2952–2957.

    Google Scholar 

  32. R. Ortega, P. Nicklasson, and G. Espinosa-Perez, “On Speed Control of Induction Motors,”AutomaticaVol. 32, No. 3, Mar. 1996, pp. 455–460.

    Article  MATH  Google Scholar 

  33. R. Ortega, D. Taoutaou, R. Rabinovici, and J. Vilain, “On Field Oriented and Passivity-based Control of Induction Motors: Downward Compatibility,”Proceedings of the IFAC NOLCOS ConferenceTahoe City, CA., 1995, pp. 672–677.

    Google Scholar 

  34. R. Ortega and D. Taoutaou, “Indirect Field Oriented Speed Regulation for Induction Motors is Globally Stable,”IEEE Transactions on Industrial ElectronicsVol. 43, No. 2, Apr. 1996, pp. 340–341.

    Google Scholar 

  35. R. Ortega and G. Espinosa, “Torque Regulation of Induction Motors,”AutomaticaVol. 29, No. 3, May 1993, pp. 621–633.

    Article  Google Scholar 

  36. M. de Queiroz and D. M. Dawson, “Nonlinear Control of Active Magnetic Bearings: A Backstepping Approach,”IEEE Transactions on Control Systems TechnologyVol. 4, No. 5, Sept. 1996, pp. 545–552.

    Article  Google Scholar 

  37. S. Sastry and M. BodsonAdaptive Control: Stability Convergence and RobustnessEnglewood Cliffs, NJ: Prentice-Hall, 1989.

    Google Scholar 

  38. R. D. Smith and W. F. Weldon, “Nonlinear Control of a Rigid Rotor Magnetic Bearing System: Modeling and Simulation with Full State Feedback,”IEEE Transactions on MagneticsVol. 31, No. 2, Mar. 1995, pp. 973–980.

    Article  Google Scholar 

  39. E. Sontag and H. Sussmann, “Further Comments on the Stabilization of the Angular Velocity of a Rigid Body,”Systems and Control LettersVol. 12, 1988, pp. 213–217.

    Article  MathSciNet  Google Scholar 

  40. M. W. Spong and M. VidyasagarRobot Dynamics and ControlNew York: John Wiley, 1989.

    Google Scholar 

  41. M. Ilic’-Spong, R. Marino, S. M. Peresada, and D. G. Taylor, “Feedback Linearizing Control of Switched Reluctance Motors,”IEEE Transactions on Automatic ControlVol. AC-32, No. 5, 1987, pp. 371–379.

    Article  Google Scholar 

  42. M. Ilic’-Spong, T. J. Miller, S. R. Macminn, and J. S. Thorp, “Instantaneous Torque Control of Electric Motor Drives,”IEEE Transactions on Power ElectronicsVol. PE-2, No. 1, 1987, pp. 55–61.

    Article  Google Scholar 

  43. D. G. Taylor, “An Experimental Study on Composite Control of Switched Reluctance Motors,”IEEE Control Systems Magazine1991, pp. 31–36.

    Google Scholar 

  44. D. G. Taylor, “Adaptive Control Design for a Class of Doubly-Salient Motors,”Proceedings of the IEEE Conference on Decision and Control1991, pp. 2903–2908.

    Google Scholar 

  45. P. Vedagarbha, T. Burg, J. Hu, and D. Dawson, “A Systematic Procedure for the Design of Adaptive Partial State Feedback Position Tracking Controllers for Electric Machines,” Proceedings of f the IEEE Conference on Decision and Control, New Orleans, LA, Dec. 1995, pp. 2133–2138.

    Google Scholar 

  46. P. Vedagarbha, D. M. Dawson, and W. Rhodes, “An Adaptive Control for General Class of Switch Reluctance Motor Models,”AutomaticaVol. 33, No. 9, Sept. 1997, pp. 1647–1655.

    Article  MathSciNet  Google Scholar 

  47. R. S. Wallace and D. G. Taylor, “Low-Torque-Ripple Switched Reluctance Motors for Direct-Drive Robotics,”IEEE Transactions on Robotics and AutomationVol. 7, No. 6, 1991, pp. 733–742.

    Article  Google Scholar 

  48. R. S. Wallace and D. G. Taylor, “A Balanced Commutator for Switched Reluctance Motors to Reduce Torque Ripple,”IEEE Transactions on Power ElectronicsVol. 7, No. 4, 1992, pp. 617–626.

    Article  Google Scholar 

  49. H. H. Woodson and J. R. MelcherElectromechanical Dynamics-Part I: Discrete SystemsNew York, NY: John Wiley, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dixon, W.E., Behal, A., Dawson, D.M., Nagarkatti, S.P. (2003). Electric Machines. In: Nonlinear Control of Engineering Systems. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0031-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0031-4_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6581-8

  • Online ISBN: 978-1-4612-0031-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics