Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

  • 844 Accesses

Abstract

In this chapter, several different control applications for mechanical systems are examined. The first system discussed is an autobalancing application. A perfectly balanced rotating object (i.e., the center of geometry and center of mass are coincident) will usually not undergo any vibration. However, due to the errors associated with geometric dimensions and the nonhomogeneity of the raw material, the construction of a perfectly balanced object is difficult to achieve using a standard manufacturing process. Due to the difficulty and/or expense required to construct a perfectly balanced ob-ject, some amount of vibration can be expected as an object rotates. This vibration can lead to performance degradation and/or failure of the mechanical system. These undesirable vibrational effects are often amplified during high-speed rotation. A simple solution to the imbalance problem is to introduce passive damping via selective placement of ball bearings. However, the use of a passive bearing often leads to an increase in friction, resulting in further degradation of the system performance. An alternative means to mitigate the vibrational effects of rotating systems is to produce frictionless forces (e.g., magnetic forces) that act on the rotating body. These forces can provide an autobalancing capability for the case of highspeed rotation-based systems (e.g., precision grinding, turbines, aircraft propellers, flywheels). However, since the slightest imbalance can induce very large and potentially destabilizing vibrations, an active control system that can generate the desired forces very precisely is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. M. Aamo, M. Arcak, T. I. Fossen, and P. V. Kokotovie, “Global Output Tracking Control of a Class of Euler-Lagrange Systems,”Proceedings of the IEEE Conference on Decision and ControlDec. 2000, pp. 2478–2483.

    Google Scholar 

  2. O. M. Aamo, M. Arcak, T. I. Fossen, and P. V. Kokotovié, “Global Output Tracking Control of a Class of Euler-Lagrange Systems with Monotonic Nonlinearities in the Velocities,”International Journal of ControlVol. 74, No. 7, May 2001, pp. 649–658.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Ahmed, V. T. Coppola, and D.S. Bernstein, “Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification,”Journal of Guidance Control and Dynamics Vol. 21, No. 5, Sept.—Oct. 1998, pp. 684–691.

    Article  Google Scholar 

  4. J. G. Balchen, N. A. Jenssen, and S. Saellid, “Dynamic Positioning of Floating Vessels Based on Kalman Filtering and Optimal Control,”Proceedings of the IEEE Conference on Decision and Control1980, pp. 852–864.

    Google Scholar 

  5. T. Burg, D. Dawson, and P. Vedagarbha, “A Redesigned DCAL Controller without Velocity Measurements: Theory and Demonstration,”RoboticaVol. 15, 1997, pp. 337–346.

    Article  Google Scholar 

  6. F. Caccavale, C. Natale, B. Siciliano, and L. Villani, “Resolved-Acceleration Control of Robot Manipulators: A Critical Review with Experiments,”Robo ticaVol. 16, 1998, pp. 565–573.

    Article  Google Scholar 

  7. F. Caccavale, C. Natale, and L. Villani, “Task-space Control Without Velocity Measurements,”Proceedings of the IEEE International Conference on Robotics and Automation1999, pp. 512–517.

    Google Scholar 

  8. R. Campa, R. Kelly, and E. Garcia, “On Stability of the Resolved Acceleration Control,”Proceedings of the IEEE International Conference on Robotics and Automation2001, pp. 3523–3528.

    Google Scholar 

  9. C. Canudas De Wit, E. Olguin, D. Perrier, and M. Perrier, “Robust Nonlinear Control of an Underwater Vehicle/Manipulator System with Composite Dynamics,”Proceedings of the IEEE International Conference on Robotics and Automation1998, pp. 452–457.

    Google Scholar 

  10. R. Colbaugh and K. Glass, “Robust Adaptive Control of Redundant Manipulators,” Journal of Intelligent and Robotic Systems, Vol. 14, 1995, pp. 68–88.

    Article  Google Scholar 

  11. N. Costescu, D. M. Dawson, and M. Loffler, “Qmotor2.0-A PC Based Real-Time Multitasking Graphical Control Environment,”IEEE Control Systems MagazineVol. 19, No. 3, June 1999, pp. 68–76.

    Article  Google Scholar 

  12. B. T. Costic, D. M. Dawson, M. S. de Queiroz, and V. Kapila, “A Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements,” Proceedings of the IEEE Conference on Decision and Control, Dec. 2000, pp. 2424–2429.

    Google Scholar 

  13. B. T. Costic, S. P. Nagarkatti, D. M. Dawson, and M. S. de Queiroz, “Autobalancing DCAL Controller for Rotating Unbalanced Disk,”Mechatronics: An International JournalVol. 12, No.5June 2002, pp. 685–712.

    Article  Google Scholar 

  14. D. M. Dawson, M. M. Bridges, and Z. Qu, Nonlinear Control of Robotic Systems for Environmental Waste and Restoration, Englewood Cliffs, NJ: Prentice-Hall, 1995.

    Google Scholar 

  15. M. S. de Queiroz, D. M. Dawson, S. Nagarkatti, and F. Zhang, Lyapunov-Based Control of Mechanical Systems, Boston, MA: Birkhäuser, 2000.

    Book  Google Scholar 

  16. M. S. de Queiroz and D. M. Dawson, “Nonlinear Control of Active Magnetic Bearings: A Backstepping Approach,” IEEE Transactions on Control Systems Technology (Special Issue on Magnetic Bearing Control), Vol. 4, No. 5, Sept. 1996, pp. 545–552.

    Google Scholar 

  17. Y. Fang, E. Zergeroglu, M. S. de Queiroz, and D. M. Dawson, “Global Output Feedback Control of Dynamically Positioned Surface Vessels: An Adaptive Control Approach,”Proceedings of the American Control ConferenceJune 2001, pp. 3109–3114.

    Google Scholar 

  18. O. Fjellstad and T. I. Fossen, “Quaternion Feedback Regulation of Underwater Vehicles,” Proceedings of the IEEE Conference on Control Applications, Dec. 1994, pp. 857–862.

    Google Scholar 

  19. T. I. Fossen, Guidance and Control of Ocean Vehicles, Chichester, UK: John Wiley, 1994.

    Google Scholar 

  20. T. I. Fossen andA.Grovlen, “Nonlinear Output Feedback Control of Dynamically Positioned Ships Using Vectorial Observer Backstepping,”IEEE Transactions on Control Systems Technology, Vol.6, No. 1, Jan. 1998, pp. 121–128.

    Article  Google Scholar 

  21. M. J. Grimble, R. J. Patton, and D. A. Wise, “The Design of Dynamic Positioning Control Systems Using Stochastic Optimal Control Theory,”Optimal Control Application Methods Vol. 11980, pp. 167–202.

    MATH  Google Scholar 

  22. P. Hsu, J. Hauser, and S. Sastry, “Dynamic Control of Redundant Manipulators,”Journal of Robotic Systems Vol. 6, 1989, pp. 133–148.

    MATH  Google Scholar 

  23. P. C. HughesSpacecraft Attitude DynamicsNew York, NY: John Wiley, 1994.

    Google Scholar 

  24. O. Khatib, “Dynamic Control of Manipulators in Operational Space,”IFTOMM Congress Theory of Machines and Mechanisms1983, pp. 1–10.

    Google Scholar 

  25. J. B. KuipersQuaternions and Rotation SequencesPrinceton, NJ: Princeton University Press, 1999.

    Google Scholar 

  26. F. Lewis, C. Abdallah, and D. M. DawsonControl of Robot ManipulatorsNew York: MacMillan Publishing Co., 1993.

    Google Scholar 

  27. F. Lizarralde and J. T. Wen, “Attitude Control Without Angular Velocity Measurement: A Passivity Approach,”IEEE Transactions on Automatic Control Vol. 41, No. 3, Mar. 1996, pp. 468–472.

    MathSciNet  MATH  Google Scholar 

  28. M. L. Long, J. J. Carroll, and R. Mukundan, “Adaptive Control of Active Magnetic Bearings Under Unknown Static Load Change and Unbalance,”Proceedings of the IEEE Conference on Control Applications, Dearborn, MI, Sept. 1996, pp. 876–881.

    Google Scholar 

  29. A. Loria, T. I. Fossen, and E. Panteley, “A Separation Principle for Dynamic Positioning of Ships: Theoretical and Experimental Results,”IEEE Transactions on Control Systems Technology Vol., 8, No. 2, Mar. 2000, pp. 322–343.

    Article  Google Scholar 

  30. K. Lum, V. Coppola, and D. Bernstein, “Adaptive Autocentering Control for an Active Magnetic Bearing Supporting a Rotor with Unknown Mass Imbalance,”IEEE Transactions on Control Systems TechnologyVol. 4, No. 5, Sept. 1996, pp. 587–597.

    Article  Google Scholar 

  31. K. Lum, V. Coppola, and D. Bernstein, “Adaptive Virtual Autobalancing for a Rigid Rotor with Unknown Mass Imbalance Supported by Magnetic Bearings,”ASME Journal of Vibration and AcousticsVol. 120, Apr. 1998, pp. 557–570.

    Article  Google Scholar 

  32. Y. NakamuraAdvanced Robotics Redundancy and OptimizationReading, MA: Addison-Wesley, 1991.

    Google Scholar 

  33. Ola-Erik Fjellstad and Thor I. Fossen, “Quaternion Feedback Regulation of Underwater Vehicles,”Proceedings of the IEEE Conference on Control ApplicationsStrathclyde University, Glasgow, Aug. 1994, pp. 857–862.

    Google Scholar 

  34. F. A. Papoulias and A. J. Healey, “Path Control of Surface Ships Using Sliding Modes,”Journal of Ship ResearchVol. 36, No. 2, 1992, pp. 141–153.

    Google Scholar 

  35. Z. X. Peng and N. Adachi, “Compliant Motion Control of Kinematically Redundant Manipulators,”IEEE Transactions on Robotics and AutomationVol. 9, No. 6, Dec. 1993, pp. 831–837.

    Article  Google Scholar 

  36. N. Sadegh and R. Horowitz, “Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators,”International Journal of Robotic ResearchVol. 9, No. 9, June 1990, pp. 74–92.

    Article  Google Scholar 

  37. H. Seraji, “Configuration Control of Redundant Manipulators: Theory and Implementation,”IEEE Transactions on Robotics and AutomationVol. 5, No. 4, Aug. 1989, pp. 472–490.

    Article  Google Scholar 

  38. J. -J. E. Slotine and W. LiApplied Nonlinear ControlEnglewood Cliffs, NJ: Prentice-Hall, 1991.

    Google Scholar 

  39. A. J. Sorensen, S. I. Sagatun, and T. I. Fossen, “Design of a Dynamic Positioning System Using Model-Based Control,”Control Engineering PracticeVol. 4, No. 3, 1996, pp: 359–368.

    Article  Google Scholar 

  40. M. W. Spong and M. VidyasagarRobot Dynamics and ControlNew York, NY: John Wiley, 1989.

    Google Scholar 

  41. B. Xian, M. S. de Queiroz, D. M. Dawson, and I. D. Walker, “Task-Space Tracking Control of Redundant Robot Manipulators via Quaternion Feedback,”Proceedings of the IEEE Conference on Control ApplicationsSept. 2001, pp. 363–368.

    Google Scholar 

  42. J. S. C. Yuan, “Closed-Loop Manipulator Control Using Quaternion Feedback,”IEEE Transactions on Robotics and AutomationVol. 4, No. 4, Aug. 1988, pp. 434–440.

    Article  Google Scholar 

  43. T. Yoshikawa, “Analysis and Control of Robot Manipulators with Redundancy,”Robotics Research-The First International SymposiumCambridge, MA, 1984, pp. 735–747.

    Google Scholar 

  44. E. Zergeroglu, D. M. Dawson, M.S. de Queiroz, and M. Krstic, “On Global Output Feedback Tracking Control of Robot Manipulators,”Proceedings of the IEEE Conference on Decision and Control2000, pp. 5073–5078.

    Google Scholar 

  45. E. Zergeroglu, D. M. Dawson, I. Walker, and A. Behal, “Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators,”Proceedings of the American Control ConferenceJune 2000, pp. 25132517.

    Google Scholar 

  46. F. Zhang, D. M. Dawson, M. S. de Queiroz, and W. Dixon, “Global Adaptive Output Feedback Tracking Control of Robot Manipulators,”IEEE Transactions on Automatic ControlVol. 45, No. 6, June 2000, pp. 1203–1208.

    Article  MATH  Google Scholar 

  47. F. Zhang, S. P. Nagarkatti, B. Costic, and D. M. Dawson, “Adaptive Autobalancing Boundary Control for a Flexible Rotor,”Proceedings of the American Control ConferenceJune 1999, pp. 2220–2224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dixon, W.E., Behal, A., Dawson, D.M., Nagarkatti, S.P. (2003). Mechanical Systems. In: Nonlinear Control of Engineering Systems. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0031-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0031-4_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6581-8

  • Online ISBN: 978-1-4612-0031-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics