Skip to main content

Airborne Carcinogens: Mechanisms of Cancer

  • Chapter
Air Pollution and Health Effects

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 3411 Accesses

Abstract

Both indoor and outdoor air pollution have been recognized to contribute to global health burden. The reported health effects range from cardiovascular, respiratory diseases, neuronal to cancer. This chapter aims to provide the up-to date details on the mechanisms of carcinogenesis of air pollutants; benzene, formaldehyde, polycyclic aromatic hydrocarbons, environmental tobacco smoke, while identifying common and unique molecular mechanisms of carcinogenesis. Finally, this chapter also discusses about research gaps and future research needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A report of the Surgeon General (2006) The health consequences of involuntary exposure to tobacco smoke. pp 1–23, 423–485

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological profile for formaldehyde (1999) Public Health Service, U.S. Department of Health and Human Services, Atlanta. http://www.atsdr.cdc.gov/toxprofiles/tp111.html

  • Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological profile for polycyclic aromatic hydrocarbons (1995) Public Health Service, U.S. Department of Health and Human Services, Atlanta. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=122&tid=25

  • Agency for Toxicological Substances Disease Registry (ATSDR) (2007) Toxicological profile for Benzene. www.atsdr.cdc.gov/toxprofiles/tp3.pdf

  • Alexander DD, Wagner ME (2010) Benzene exposure and non-Hodgkin lymphoma: a meta-analysis of epidemiologic studies. J Occup Environ Med 52(2):169–189

    CAS  PubMed  Google Scholar 

  • Anderson KE, Steven G, Carmella C et al (2001) Metabolites of a tobacco-specific lung carcinogen in nonsmoking women exposed to environmental tobacco smoke. J Natl Cancer Inst 93(5):378–381

    CAS  PubMed  Google Scholar 

  • Andreoli R, Protano C, Manini P et al (2012) Association between environmental exposure to benzene and oxidative damage to nucleic acids in children. Med Lav 103(5):324–337

    PubMed  Google Scholar 

  • Apelberg BJ, Hepp LM, Avila-Tang E et al (2013) Environmental monitoring of secondhand smoke exposure. Tob Control 22(3):147–155

    PubMed Central  PubMed  Google Scholar 

  • Arif JM, Smith WA, Gupta RC (1999) DNA adduct formation and persistence in rat tissues following exposure to the mammary carcinogen dibenzo [a, l]pyrene. Carcinogenesis 20(6):1147–1150

    CAS  PubMed  Google Scholar 

  • Bansal SK, Zaleski J, Gessner T (1981) Glucuronidation of oxygenated benzo (a) pyrene derivatives by UDP-glucuronyl transferase of nuclear envelope. Biochem Biophys Res Commun 98(1):131–139

    CAS  PubMed  Google Scholar 

  • Beane Freeman LE, Blair A et al (2009) Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries: the National Cancer Institute Cohort. J Natl Cancer Inst 101(10):751–761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bechtold WE, Henderson RF (1993) Biomarkers of human exposure to benzene. J Toxicol Environ Health 40(2–3):377–386

    CAS  PubMed  Google Scholar 

  • Bechtold WE, Willis JK, Sun JD et al (1992a) Biological markers of exposure to benzene: S-phenylcysteine in albumin. Carcinogenesis 13(7):1217–1220

    CAS  PubMed  Google Scholar 

  • Bechtold WE, Sun JD, Birnbaum LS et al (1992b) S-phenylcysteine formation in hemoglobin as a biological exposure index to benzene. Arch Toxicol 66(5):303–309

    CAS  PubMed  Google Scholar 

  • Beland FA, Fullerton NF, Heflich RH (1984) Rapid isolation, hydrolysis and chromatography of formaldehyde-modified DNA. J Chromatogr 308:121–131

    CAS  PubMed  Google Scholar 

  • Bermudez E, Allen PF (1984) The assessment of DNA damage and repair in rat nasal epithelial cells. Carcinogenesis 5(11):453–458

    Google Scholar 

  • Bermudez E, Smith-Oliver T, Delehanty LL (1989) The induction of DNA-strand breaks and unscheduled DNA synthesis in F-344 rat hepatocytes following in vivo administration of caprolactam or benzoin. Mutat Res 224(3):361–364

    CAS  PubMed  Google Scholar 

  • Bhattacharya NP, Maher VC, McCormic JJ (1989) Ability of structurally related polycyclic aromatic carcinogens to induce homologous recombination between duplicated chromosomal sequences in mouse L cells. Mutat Res 211(2):205–214

    Google Scholar 

  • Bi Y, Li Y, Kong M, Xiao X et al (2010) Gene expression in benzene-exposed workers by microarray analysis of peripheral mononuclear blood cells: induction and silencing of CYP4F3A and regulation of DNA-dependent protein kinase catalytic subunit in DNA double strand break repair. Chem Biol Interact 184(1–2):207–211

    CAS  PubMed  Google Scholar 

  • Binkova B, Chvatalova I, Lnenickova Z et al (2007) PAH-DNA adducts in environmentally exposed population in relation to metabolic and DNA repair gene polymorphisms. Mutat Res 620(1–2):49–61

    CAS  PubMed  Google Scholar 

  • Boström CE, Gerde P, Hanberg A et al (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(Suppl 3):451–488

    PubMed Central  PubMed  Google Scholar 

  • Braithwaite E, Wu X, Wang Z (1998) Repair of DNA lesions induced by polycyclic aromatic hydrocarbons in human cell-free extracts: involvement of two excision repair mechanisms in vitro. Carcinogenesis 19(7):1239–1246

    CAS  PubMed  Google Scholar 

  • Buss J, Kuschinsky K, Kewitz H et al (1964) Enteric resorption of formaldehyde. Naunyn Schmiedebergs Arch Pharmacol 247:380–381

    Google Scholar 

  • Casanova M, Heck H’A (1987) Further studies of the metabolic incorporation and covalent binding of inhaled [3H]- and [14C]formaldehyde in Fischer-344 rats: effects of glutathione depletion. Toxicol Appl Pharmacol 89(1):105–121

    CAS  PubMed  Google Scholar 

  • Cassee FR, Feron VJ (1994) Biochemical and histopathological changes in nasal epithelium of rats after 3-day intermittent exposure to formaldehyde and ozone alone or in combination. Toxicol Lett 72(1–3):257–268

    CAS  PubMed  Google Scholar 

  • Castro DJ, Löhr CV, Fischer KA et al (2008a) Lymphoma and lung cancer in offspring born to pregnant mice dosed with dibenzo[a, l]pyrene: the importance of in utero vs. lactational exposure. Toxicol Appl Pharmacol 233(3):454–458

    PubMed Central  CAS  PubMed  Google Scholar 

  • Castro DJ, Baird WM, Pereira CB (2008b) Fetal mouse Cyp1b1 and transplacental carcinogenesis from maternal exposure todibenzo(a, l)pyrene. Cancer Prev Res (Phila) 1(2):128–134

    CAS  Google Scholar 

  • CDC (2009) Tobacco use targeting the nation’s leading killer at a glance. Available at http://www.cdc.gov/chronicdisease/resources/publications/aag/pdf/tobacco.pdf

  • Cheng G, Shi Y, Sturla SJ et al (2003) Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links. Chem Res Toxicol 16(2):145–152

    CAS  PubMed  Google Scholar 

  • Chou HC, Ozawa S, Fu PP et al (1998) Metabolic activation of methyl-hydroxylated derivatives of 7,12-dimethylbenz[a]anthracene by human liver dehydroepiandrosterone-steroid sulfotransferase. Carcinogenesis 19(6):1071–1076

    CAS  PubMed  Google Scholar 

  • Claxton LD, Woodall GMJR (2007) A review of the mutagenicity and rodent carcinogenicity of ambient air. Mutat Res 636(1–3):36–94

    CAS  PubMed  Google Scholar 

  • Claxton LD, Mathew PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res 567(2–3):347–349

    CAS  PubMed  Google Scholar 

  • Coggins CR (2007) An updated review of inhalation studies with cigarette smoke in laboratory animals. Int J Toxicol 26(4):331–338

    CAS  PubMed  Google Scholar 

  • Cook JW, Hewett CL, Hieger I (1933) The isolation of a cancer-producing hydrocarbon from coal tar. Parts I, II, and III. J Chem Soc 0:395–405

    Google Scholar 

  • Cook R, Strum M, Touma JS et al (2007) Inhalation exposure and risk from mobile source air toxics in future years. J Expo Sci Environ Epidemiol 17:95–105

    CAS  PubMed  Google Scholar 

  • Courter LA, Luch A, Musafia-Jeknic T et al (2008) The influence of diesel exhaust on polycyclic aromatic hydrocarbon-induced DNA damage, gene expression, and tumor initiation in Sencar mice in vivo. Cancer Lett 265(1):135–147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cronkite EP, Bullis J, Inoue T et al (1984) Benzene inhalation produces leukemia in mice. Toxicol Appl Pharmacol 75(2):358–361

    CAS  PubMed  Google Scholar 

  • Darwiche N, Ryscavage A, Perez-Lorenzo R, Wright L et al (2007) Expression profile of skin papillomas with high cancer risk displays a unique genetic signature that clusters with squamous cell carcinomas and predicts risk for malignant conversion. Oncogene 26(48):6885–6895

    CAS  PubMed  Google Scholar 

  • Deltour L, Foglio MH, Duester G (1999) Metabolic deficiency in alcohol dehydrogenase Adh1, Adh3 and Adh4 null mutant mice: Overlapping roles in Adh1 and Adh4 in ethanol clearance and metabolism of retinol to retinoic acid. J Biol Chem 274(24):16796–16801

    CAS  PubMed  Google Scholar 

  • Demetriou CA, Raascou-Nielsen O, Loft S et al (2012) Biomarkers of ambient air pollution and lung cancer: a systematic review. Occup Environ Med 69(9):619–627

    CAS  PubMed  Google Scholar 

  • Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334

    CAS  PubMed  Google Scholar 

  • Desler C, Johannessen C, Rasmussen LJ et al (2009) Repair of DNA damage induced by anthanthrene, a polycyclic aromatic hydrocarbon (PAH) without bay or fjord regions. Chem Biol Interact 177(3):212–217

    CAS  PubMed  Google Scholar 

  • Dhammapala R, Claiborn C, Jimenez J et al (2007) Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubble burns. Atmos Environ 41(12):2660–2669

    CAS  Google Scholar 

  • Dillon D, Combes R, Zeiger E (1998) The effectiveness of Salmonella strains TA100, TA102 and TA104 for detecting mutagenicity of some aldehydes and peroxides. Mutagenesis 13(1):19–26

    CAS  PubMed  Google Scholar 

  • Doolittle DJ, Furlong JW, Butterworth BE (1985) Assessment of chemically induced DNA repair in primary cultures of human bronchial epithelial cells. Toxicol Appl Pharmacol 79(1):28–38

    CAS  PubMed  Google Scholar 

  • Eastmond DA, Schuler M, Frantz C et al (2001) Characterization and mechanisms of chromosomal alterations induced by benzene in mice and humans. Res Rep Health Eff Inst 103:1–68; discussion 69–80

    PubMed  Google Scholar 

  • Egle JL Jr (1972) Retention of inhaled formaldehyde, propionaldehyde, and acrolein in the dog. Arch Environ Health 25:119–124

    CAS  PubMed  Google Scholar 

  • Emri G, Schaefer D, Held B et al (2004) Low concentrations of formaldehyde induce DNA damage and delay DNA repair after UV irradiation in human skin cells. Exp Dermatol 13(5):305–315

    CAS  PubMed  Google Scholar 

  • Health and Environment Canada (2012) Report on formaldehyde: indoor air quality. Available at: http://cfpub.epa.gov/ncea/iris_drafts/recorddisplay.cfm?deid=223614

  • Esposito S, Tenconi R, Lelii M et al (2014) Possible molecular mechanisms linking air pollution and asthma in children. BMC Pulm Med 14(31):1471–1474

    Google Scholar 

  • Farmer PB, Kaur B, Roach J (2005) The use of S-phenylmercapturic acid as a biomarker in molecular epidemiology studies of benzene. Chem Biol Interact 153–154:97–102

    PubMed  Google Scholar 

  • Farris GM, Everitt JI, Irons RD et al (1993) Carcinogenicity of inhaled benzene in CBA mice. Fundam Appl Toxicol 20(4):503–507

    CAS  PubMed  Google Scholar 

  • Ferkol T, Schraufnagel D (2014) The global burden of respiratory disease. Ann Am Thorac soc 11(3):404–406

    PubMed  Google Scholar 

  • Fox CH, Johnson FB, Whiting J et al (1985) Formaldehyde fixation. J Histochem Cytochem 33(8):845–853

    CAS  PubMed  Google Scholar 

  • Fustinoni S, Consonni D, Campo L et al (2005) Monitoring low benzene exposure: comparative evaluation of urinary biomarkers, influence of cigarette smoking, and genetic polymorphisms. Cancer Epidemiol Biomarkers Prev 14(9):2237–2244

    CAS  PubMed  Google Scholar 

  • Galbraith D, Gross SA, Paustenbach D (2010) Benzene and human health: a historical review and appraisal of associations with various diseases. Crit Rev Toxicol 40(Suppl 2):1–46

    PubMed  Google Scholar 

  • Garfinkel L (1981) Time trends in lung cancer mortality among nonsmokers and a note on passive smoking. J Natl Cancer Inst 66(6):1061–1066

    CAS  PubMed  Google Scholar 

  • Georgiadis P, Topinka J, Stoikidou M et al (2001) Biomarkers of genotoxicity of air pollution (the AULIS project): bulky DNA adducts in subjects with moderate to low exposures to airborne polycyclic aromatic hydrocarbons and their relationship to environmental tobacco smoke and other parameters. Carcinogenesis 22(9):1447–1457

    CAS  PubMed  Google Scholar 

  • Gowans ID, Lorimore SA, McIlrath JM et al (2005) Genotype-dependent induction of transmissible chromosomal instability by gamma-radiation and the benzene metabolite hydroquinone. Cancer Res 65(9):3527–3530

    CAS  PubMed  Google Scholar 

  • Grafstrom RC, Fornace A Jr, Harris CC (1984) Repair of DNA damage caused by formaldehyde in human cells. Cancer Res 44(10):4323–4327

    CAS  PubMed  Google Scholar 

  • Grimmer G, Brune H, Dettbarn G et al (1987) Contribution of polycyclic aromatic compounds to the carcinogenicity of sidestream smoke of cigarettes evaluated by implantation into the lungs of rats. Cancer Lett 43(3):173–177

    Google Scholar 

  • Guttenplan JB, Kosinska W, Zhao ZL et al (2012) Mutagenesis and carcinogenesis induced by dibenzo[a, l]pyrene in the mouse oral cavity: a potential new model for oral cancer. Int J Cancer 130(12):2783–2790

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamaguchi F, Tsutsui T (2000) Assessment of genotoxicity of dental antiseptics: ability of phenol, guaiacol, p-phenolsulfonic acid, sodium hypochlorite, p-chlorophenol, m-cresol or formaldehyde to induce unscheduled DNA synthesis in cultured Syrian hamster embryo cells. Jpn J Pharmacol 83(3):273–276

    CAS  PubMed  Google Scholar 

  • Hamilton A (1931) Benzene (Benzol) poisoning: general review. Arch Pathol 11:601–637

    Google Scholar 

  • Hauptmann M, Stewart PA, Lubin JH et al (2009) Mortality from Lymphohematopoietic malignancies and brain cancer among embalmers exposed to formaldehyde. J Natl Cancer Inst 101(24):1696–1708

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91(14):1194–1210

    CAS  PubMed  Google Scholar 

  • Hecht SS (2004) Carcinogen derived biomarkers: applications in studies of human exposure to secondhand tobacco smoke. Tob Control 13:i48–i56

    PubMed Central  PubMed  Google Scholar 

  • Hecht SS (2005) Carcinogenicity studies of inhaled cigarette smoke in laboratory animals: old and new. Carcinogenesis 26(9):1488–1492

    CAS  PubMed  Google Scholar 

  • Heck HD, Chin TY, Schmitz MC (1983) Distribution of [14C] formaldehyde in rats after inhalation exposure. In: Gibson JE (ed) Formaldehyde toxicity. Hemisphere Publishing Corporation, Washington, DC, pp 26–37

    Google Scholar 

  • Hedberg JJ, Griffiths WJ, Nilsson SJ et al (2003) Reduction of s-nitroso glutathione by human alcohol deghydrogenase 3 is an irreversible reaction as analyzed by electrospray mass spectrometry. Eur J Biochem 270(6):1249–1256

    CAS  PubMed  Google Scholar 

  • Hikiba H, Watanabe E, Barrett JC et al (2005) Ability of fourteen chemical agents used in dental practice to induce chromosome aberrations in Syrian hamster embryo cells. J Pharmacol Sci 97(1):46–52

    Google Scholar 

  • Hirayama T (1981) Non-smoking wives of heavy smokers have a higher risk of lung cancer: a study from Japan. Bull World Health Org 78(7):940–942

    Google Scholar 

  • Husgafvel-Pursiainen K, Boffetta P, Kannio A et al (2000) p53 mutations and exposure to environmental tobacco smoke in a multicenter study on lung cancer. Cancer Res 60(11):2906–2911

    CAS  PubMed  Google Scholar 

  • IARC (2004) Monograph on evaluating carcinogen risks. Tobacco smoke and involuntary smoking. Lyon. 83:1–1438

    Google Scholar 

  • IARC (2010) Table 1.5. Monograph on second hand tobacco smoke, Lyon, France 100E:213–255. http://monographs.iarc.fr/ENG/Monographs/vol100E/mono100E-7.pdf. Referenced to Öberg M, Jaakkola MS, Prüss-Ãœstün A, Schweizer C, Woodward A (2010) Second-hand smoke: assessing the environmental burden of disease at national and local levels. World Health Organization, Geneva (WHO Environmental Burden of Disease Series, No. 18). http://www.who.int/quantifying_ehimpacts/publications/SHS.pdf

  • IARC (2014) http://www.iarc.fr/en/publications/books/sp161/index.php. In: Kurt Straif, Aaron Cohen, Jonathan Samet (eds) Air pollution and cancer. IARC Scientific Publication No. 161

  • IARC (2010) monographs on the evaluation of carcinogenic risks to humans vol 92. Some non-heterocyclic polycyclicaromatic hydrocarbons and some related exposures. Available at monographs.ionc.fr/EVG/monographs/vol92/mono92.pdf

  • Inoue O, Seiji K, Nakatsuka H et al (1989) Urinary t, t-muconic acid as an indicator of exposure to benzene. Br J Ind Med 46(2):122–127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Inoue O, Kanno E, Kakizaki M et al (2000) Urinary phenylmercapturic acid as a marker of occupational exposure to benzene. Ind Health 38(2):195–204

    CAS  PubMed  Google Scholar 

  • International Agency for Cancer Research (IARC) (2010) Benzene – IARC monographs on the evaluation of carcinogenicity of Benzene. 100F:257–262. monographs.iarc.fr/ENG/Monographs/vol100F/mono100F-24.pdf

  • International Agency for Research on Cancer (IARC) Monographs (2009) Vol 100: A review and update on occupational carcinogens – a review of human carcinogens – part C: metals, arsenic, dusts and fibres. Lyon, pp 87–89. http://monographs.iarc.fr/ENG/Publications/techrep42/TR42-11.pdf

  • International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risks to humans (1995), Wood dust and formaldehyde, vol 62. Lyon. http://www.inchem.org/documents/iarc/vol62/wood.html and http://www.inchem.org/documents/iarc/vol62/formal.html

  • International Agency for Research on Cancer (IARC) Monographs on the evaluation of carcinogenic risks to humans (2006) Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxy-2-propanol, vol 88. IARC, Lyon. http://monographs.iarc.fr/ENG/Monographs/vol88/volume88.pdf

  • Ishihama M, Toyooka T, Ibuki Y (2008) Generation of phosphorylated histone H2AX by benzene metabolites. Toxicol In Vitro 22(8):1861–1868

    CAS  PubMed  Google Scholar 

  • Jenkins BM, Jones AD, Turn QT et al (1996a) emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environ Sci Technol 30(8):2462–2469

    CAS  Google Scholar 

  • Jenkins BM, Jones AD, Turn SQ et al (1996b) Particle concentrations, gas-particle partitioning, and species inter correlations for polycyclic aromatic hydrocarbons (PAH) emitted during biomass burning. Atmos Environ 30(22):3825–3835

    CAS  Google Scholar 

  • Jin Y, Penning TM (2007) Aldo-keto reductases and bioactivation/detoxication. Annu Rec Pharmacol Toxicol 47:263–292

    CAS  Google Scholar 

  • Kalaitzoglou M, Samara C (2006) Gas/particle partitioning and yield levels of polycyclic aromatic hydrocarbons and n-alkanes in the mainstream cigarette smoke of commercial cigarette brands. Food Chem Toxicol 44(8):1432–1442

    CAS  PubMed  Google Scholar 

  • Kamata E, Nakadate M, Uchida O et al (1997) Results of a 28 month – chronic inhalation toxicity study of formaldehyde in male Fisher 344 rats. J Toxicol Sci 22(3):239–254

    CAS  PubMed  Google Scholar 

  • Kennedy G, Slaich PK, Golding BT et al (1996) Structure and mechanism of formation of a new adduct from formaldehyde and guanosine. Biol Interact 102(2):93–100

    CAS  Google Scholar 

  • Kim SI, Yoon JI, Tommasi S et al (2012) New experimental data linking secondhand smoke exposure to lung cancer in nonsmokers. FASEB J 26(5):1845–1854

    CAS  PubMed  Google Scholar 

  • Kimbell JS, Overton JH, Subramaniam RP et al (2001) Dosimetry modeling of inhaled formaldehyde: binning nasal flux predictions for quantitative risk assessment. Toxicol Sci 64:111–121

    CAS  PubMed  Google Scholar 

  • Kleeman MJ, Schauer JJ, Cass GR (1999) Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes. Environ Sci Tech 33:3516–3523

    CAS  Google Scholar 

  • Klepeis NE, Ott WR, Switzer P (2007) Real-time measurement of outdoor tobacco smoke particles. J Air Waste Manage Assoc 57(5):522–534

    CAS  Google Scholar 

  • Kolachana P, Subrahmanyam VV, Meyer K et al (1993) Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Cancer Res 53(5):1023–1026

    CAS  PubMed  Google Scholar 

  • Kuang D, Zhang W, Deng Q, Zhang X et al (2013) Dose–response relationships of polycyclic aromatic hydrocarbons exposure and oxidative damage to DNA and lipid in coke oven workers. Environ Sci Technol 47(13):7446–7456

    CAS  PubMed  Google Scholar 

  • Lan Q, Zhang L, Shen M (2009) Large-scale evaluation of candidate genes identifies associations between DNA repair and genomic maintenance and development of benzene hematotoxicity. Carcinogenesis 30(1):50–58

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li SM, Anlauf KG, Wiebe HA et al (1994) Estimating primary and secondary production of HCHO in eastern North America based on gas-phase measurements and principal component analysis. Geophys Res Lett 21:669–672

    CAS  Google Scholar 

  • Li CT, Lin YC, Lee WJ (2003) Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere. Environ Health Perspect 111(4):483–487

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li R, Lu ZS, Qiao Y et al (2004) Study on the formaldehyde-induced DNA damage with comet assay. Shi Yan Sheng Wu Xue Bao 37(4):262–268

    CAS  PubMed  Google Scholar 

  • Liber HL, Benforado K, Crosby RM, Simpson D et al (1989) Formaldehyde-induced spontaneous alterations in human hprt DNA sequence and m-RNA expression. Mutat Res 226(1):31–37

    CAS  PubMed  Google Scholar 

  • Lin CH, Huang X, Kolbanovskii A, Hingerty BE et al (2001) Molecular topology of polycyclic aromatic carcinogens determines DNA adduct conformation: a link to tumorigenic activity. J Mol Biol 306(5):1059–1080

    CAS  PubMed  Google Scholar 

  • Liteplo RG, Meek ME (2003) Inhaled formaldehyde: exposure estimation, hazard characterization, and exposure-response analysis. J Toxicol Environ Health B Crit Rev 6(1):85–114

    CAS  PubMed  Google Scholar 

  • Lodovici M, Akpan V, Evangelisti C et al (2004) Side stream tobacco smoke as the main predictor of exposure to polycyclic aromatic hydrocarbons. J Appl Toxicol 24(4):277–281

    CAS  PubMed  Google Scholar 

  • Luo L, Jiang L, Geng C et al (2008) Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells. Chem Biol Interact 173(1):1–8

    CAS  PubMed  Google Scholar 

  • Magana-Schwencke N, Ekert B (1978) Biochemical analysis of damage induced in yeast by formaldehyde. II. Induction of cross-links between DNA and protein. Mutat Res 51(1):11–19

    CAS  PubMed  Google Scholar 

  • Mahadevan B, Luch A, Bravo CF et al (2005) Dibenzo [a, l]pyrene induced DNA adduct formation in lung tissue in vivo. Cancer Lett 227(1):25–32

    CAS  PubMed  Google Scholar 

  • Mallory TB, Gall EA, Brickley WJ et al (1939) Chronic exposure to benzene (benzol). III. The pathologic results. J Ind Hyg Toxicol 21:355–377

    CAS  Google Scholar 

  • Maltoni C, Cotti G, Valgimigli L et al (1982) Hepatocarcinomas in Sprague–Dawley rats, following exposure to benzene by inhalation: First experimental demonstration. Med Lav 73(4):446–450

    CAS  PubMed  Google Scholar 

  • Maltoni C, Conti B, Cotti G (1983) Benzene: a multipotential carcinogen. Results of long-term bioassays performed at the Bologna Institute of Oncology. Am J Ind Med 4(5):589–630

    CAS  PubMed  Google Scholar 

  • Maltoni C, Conti B, Cotti G et al (1985) Experimental studies on benzene carcinogenicity at the Bologna Institute of Oncology: current results and ongoing research. Am J Ind Med 7(5–6):415–446

    CAS  PubMed  Google Scholar 

  • Maltoni C, Ciliberti A, Cotti G et al (1989) Benzene, an experimental multipotential carcinogen: results of the long-term bioassays performed at the Bologna Institute of Oncology. Environ Health Perspect 82:109–124

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marston CP, Pereira C, Ferguson J et al (2001) Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis 22(7):1077–1086

    CAS  PubMed  Google Scholar 

  • Martin CN, McDermid AC, Garner RC (1978) Testing of known carcinogens and non-carcinogens for their ability to induce unscheduled DNA synthesis in HeLa cells. Cancer Res 38(8):2621–2627

    CAS  PubMed  Google Scholar 

  • Matsuura K, Deyashiki Y, Bunai Y et al (1996) Aldose reductase is a major reductase for isocaproaldehyde, a product of side-chain cleavage of cholesterol, in human and animal adrenal glands. Arch Biochem Biophys 328(2):265–271

    CAS  PubMed  Google Scholar 

  • Mc Hale CM et al (2012) Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 33(2):240–252

    CAS  Google Scholar 

  • McQueen CA, Rosado RR, Williams GM (1989) Effect of nalidixic acid on DNA repair in rat hepatocytes. Cell Biol Toxicol 5(2):201–206

    CAS  PubMed  Google Scholar 

  • Meger M, Meger-Kossien I, Schuler-Metz A et al (2002) Simultaneous determination of nicotine and eight nicotine metabolites in urine of smokers using liquid chromatography – tandem mass spectrometry. J Chromatogr B 778:251–261

    CAS  Google Scholar 

  • Menezes HC, Cardeal ZL (2012) Study of polycyclic aromatic hydrocarbons in atmospheric particulate matter of an urban area with iron and steel mills. Environ Toxicol Chem 31(7):1470–1471

    CAS  PubMed  Google Scholar 

  • Meschini R, Berni A, Marotta E et al (2010) DNA repair mechanisms involved in the removal of DBPDE-induced lesions leading to chromosomal alterations in CHO cells. Cytogenet Genome Res 128(1–3):124–130

    CAS  PubMed  Google Scholar 

  • Metz B, Kersten GF, Hoogerhout P et al (2004) Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 279:6235–6243

    CAS  PubMed  Google Scholar 

  • Miyachi T, Tsutsui T (2005) Ability of 13 chemical agents used in dental practice to induce sister-chromatid exchanges in Syrian hamster embryo cells. Odontology 93(1):24–29

    CAS  PubMed  Google Scholar 

  • Monticello TM, Morgan KT, Hurtt ME (1990) Unit length as the denominator for quantitation of cell proliferation in nasal epithelia. Toxicol Pathol 18(1):24–31

    CAS  PubMed  Google Scholar 

  • Monticello TM, Renne R, Morgan KT (1991) Chemically induced cell proliferation in upper respiratory tract carcinogenesis. Prog Clin Biol Res 369:323–335

    CAS  PubMed  Google Scholar 

  • Monticello TM, Swenberg JA, Gross EA et al (1996) Correlation of regional and non-linear formaldehyde-induced nasal cancer with proliferating populations of cells. Cancer Res 56(5):1012–1022

    CAS  PubMed  Google Scholar 

  • Morgan KT, Gross EA, Patterson DL (1986) Distribution, progression and recovery of acute formaldehyde – induced inhibition of nasal mucociliary function in F-344 rats. Toxicol Appl Pharmacol 86(3):448–456

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Palmer LJ, Kim JY et al (2004) Smoking status and occupational exposure affects oxidative DNA injury in boilermakers exposed to metal fume and residual oil fly ash. Cancer Epidemiol Biomarkers Prev 13(3):454–460

    CAS  PubMed  Google Scholar 

  • Mullin AH, Rando R, Esmundo F et al (1995) Inhalation of benzene leads to an increase in the mutant frequencies of a lacI transgene in lung and spleen tissues of mice. Mutat Res 327:121–129

    CAS  PubMed  Google Scholar 

  • Murty VS, Penning TM (1992a) Polycyclic aromatic hydrocarbon (PAH) ortho-quinone conjugate chemistry: kinetics of thiol addition to PAH ortho-quinones and structures of thioether adducts of naphthalene-1, 2- dione. Chem Biol Interact 84(2):169–188

    CAS  PubMed  Google Scholar 

  • Murty VS, Penning TM (1992b) Characterization of mercapturic acid and glutathionyl conjugates of benzo[a]pyrene-7, 8-dione by two-dimensional NMR. Bioconjug Chem 3(3):218–224

    CAS  PubMed  Google Scholar 

  • Narot TS, Perez L, Kunzli N et al (2011) Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet 377:732–740

    Google Scholar 

  • National Toxicology program (NTP) Formaldehyde: Report on carcinogens, 12th edn (2011) National Institute of Environmental Health Sciences, Public Health Service, U.S. Department of Health and Human Services, Research Triangle Park. http://ntp.niehs.nih.gov/ntp/roc/twelfth/profiles/formaldehyde.pdf

  • National Toxicology Program (NTP) Report on carcinogens (2002) 10th edn. National Institute of Environmental Health Sciences, Public Health Service, U.S. Department of Health and Human Services, Research Triangle Park. http://ehp.niehs.nih.gov/roc/tenth/profiles/s089form.pdf

  • National Toxicology Program (NTP) Report on carcinogens (2009) Back ground document for formaldehyde. http://ntp.niehs.nih.gov/ntp/roc/twelfth/2009/…/formaldehyde_bd_final.pdf

  • National Toxicology Program (NTP) toxicology and carcinogenesis studies of benzene (1989) CAS No. 71-43-2 in F344/N Rats and B6C3F1 Mice (Gavage Studies). Natl Toxicol Program Tech Rep Ser 289:1–277

    Google Scholar 

  • Nelson N, Levine RJ, Albert RE et al (1986) Contribution of formaldehyde to respiratory cancer. Environ Health Perspect 70:23–35

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nesnow S, Mass MJ, Ross JA et al (1998) Lung tumorigenic interactions in strain A/J mice of five environmental polycyclic aromatichydrocarbons. Environ Health Perspect 106(Suppl 6):1337–1346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nolte CG, Schauer JJ, Cass GR (1999) Highly polar organic compounds present in meat smoke. Environ Sci Technol 33(19):3313–3316

    CAS  Google Scholar 

  • NTP (2005) 12th Report on carcinogens. U.S. Department of Health and Human Services, Public Health Service. http://ntp.niehs.nih.gov/go/roc12

  • Oberg M, Jaakkola MS, Woodward A et al (2011) Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries. Lancet 377(9760):139–146

    PubMed  Google Scholar 

  • Ohba Y, Morimitsu Y, Watarai A (1979) Reaction of formaldehyde with calf-thymus nucleohistone. Eur J Biochem 100(1):285–293

    CAS  PubMed  Google Scholar 

  • Oshima J (2000) Comparative aspects of the Werner syndrome gene. In Vivo 14(1):165–172

    CAS  PubMed  Google Scholar 

  • Pope CA 3rd, Burnett RT, Thun MJ et al (2002) Lung cancer, cardiopulmonary mortality, and long term exposure to fine particulate air pollution. JAMA 287(9):1132–1141

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qu Q, Shore R, Li G et al (2005) Biomarkers of benzene: urinary metabolites in relation to individual genotype and personal exposure. Chem Biol Interact 153–154:85–89

    PubMed  Google Scholar 

  • Rappaport SM, Kim S, Lan Q et al (2009) Evidence that humans metabolize benzene via two pathways. Environ Health Perspect 117(6):946–952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ren X, Lim S, Smith MT et al (2009) Werner syndrome protein, WRN, protects cells from DNA damage induced by the benzene metabolite hydroquinone. Toxicol Sci 107(2):367–375

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reuzel PG, Wilmer JW, Woutersen RA et al (1990) Interactive effects of ozone and formaldehyde on the nasal respiratory lining epithelium in rats. J Toxicol Environ Health 29(3):279–292

    CAS  PubMed  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA et al (1993) source of fine organic aerosol. 3. Road dust, tire debris and organo metallic break lining dust: Roads as sources and sinks. Environ Sci Technol 27:1892–1904

    CAS  Google Scholar 

  • Rothman N, Haas R, Hayes RB et al (1995) Benzene induces gene-duplicating but not gene-inactivating mutations at the glycophorin A locus in exposed humans. Proc Natl Acad Sci U S A 92(9):4069–4073

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rubin H (2001) Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis 22(12):1903–1930

    CAS  PubMed  Google Scholar 

  • Ruppert T, Scherer G, Tricker AR et al (1997) trans, trans-muconic acid as a biomarker of non-occupational environmental exposure to benzene. Int Arch Occup Environ Health 69(4):247–251

    CAS  PubMed  Google Scholar 

  • Safe S, Lee SO, Jin UH (2013) Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol Sci 135(1):1–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salthammer T, Mentese S, MarutZky R (2010) Formaldehyde in the indoor environment. Chem Rev 110(4):2536–2572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schluger NW, Koppaka R (2014) Lung disease in a global context a call for public health action. Ann Am Thorac Soc 11(3):407–416

    PubMed  Google Scholar 

  • Schmid O, Speit G (2007) Genotoxic effects induced by formaldehyde in human blood and implications for the interpretation of biomonitoring studies. Mutagenesis 22(1):69–74

    CAS  PubMed  Google Scholar 

  • Schoherr E (1928) Second hand smoke contribution to the statistical and clinical features of lung tumors (in German). Z Krebsforsch 27:436–450

    Google Scholar 

  • Sellakumar AR, Snyder CA, Solomon JJ et al (1985) Carcinogenicity of formaldehyde and hydrogen chloride in rats. Toxicol Appl Pharmacol 81(3):401–406

    CAS  PubMed  Google Scholar 

  • Shah ASV, Langrish JP, Nair H et al (2013) Global association of air pollution and heart failure: a systematic review and meta analysis. Lancet. doi: http://dx.doi.org/10.1016/ S0140-6736(13)60898-3

  • Shaham J, Bomstein Y, Gurvich R et al (2003) DNA- protein cross links and P53 protein expression In relation to occupational exposure to formaldehyde. Occup Environ Med 60(6):403–409

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sheldon L, Clayton A, Keever J et al (1993) Indoor concentrations of polycyclic aromatic hydrocarbons in California residences. California Air Resources Board, Report A033-132. http://www.arb.ca.gov/research/apr/reports/l3041.pdf

  • Sheltzer JM, Blank HM, Pfau SJ et al (2011) Aneuploidy drives genomic instability in yeast. Science 333(6045):1026–1030

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen M, Lan Q, Zhang L et al (2006) Polymorphisms in genes involved in DNA double-strand break repair pathway and susceptibility to benzene-induced hematotoxicity. Carcinogenesis 27:2083–2089

    CAS  PubMed  Google Scholar 

  • Shi S, Yoon DY, Hodge-bellK C et al (2009) The aryl hydro carbon receptor nuclear translocator(ARNT)is required for tumor initiation by Benzo(a) pyrene. Carcinogenesis 30(11):1956–1961

    Google Scholar 

  • Shimada T, Inoue K, Suzuki Y et al (2002) Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6 J mice. Carcinogenesis 23(7):1199–1207

    CAS  PubMed  Google Scholar 

  • Shimizu Y, Nakatsura Y, Takahasi Y et al (2000) Benzo(a) pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci 97(2):779–782

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shorey LE, Castro DJ, Baird WM et al (2012) Transplacental carcinogenesis with dibenzo[def, p]chrysene (DBC): timing of maternal exposures determines target tissue response in offspring. Cancer Lett 317(1):49–55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siddens LK, Larkin A, Krueger SK et al (2012) Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a] pyrene, dibenzo [defp] Chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol 264(3):377–386

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skosareva LV, Lebedeva NA, Lavrik OI et al (2013) Repair of bulky DNA lesions deriving from polycyclic aromatic hydrocarbons. Mol Biol 47(5):634–644

    CAS  Google Scholar 

  • SkupiÅ„ska K, Misiewicz I, Kasprzycka-Guttman T (2004) Polycyclic aromatic hydrocarbons: physicochemical properties, environmental appearance and impact on living organisms. Acta Pol Pharm 61(3):233

    PubMed  Google Scholar 

  • Smith MT, Rothman N (2000) Biomarkers in the molecular epidemiology of benzene-exposed workers. J Toxicol Environ Health A 61(5–6):439–445

    CAS  PubMed  Google Scholar 

  • Smith MT, Yager JW, Steinmetz KL, Eastmond DA (1989) Peroxidase-dependent metabolism of benzene’s phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ Health Perspect 82:23–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smithgall TE, Harvey RG, Penning TM (1986) Regio- and stereospecificity of homogeneous 3 alpha-hydroxysteroid-dihydrodiol dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons. J Biol Chem 261(14):6184–6691

    CAS  PubMed  Google Scholar 

  • Smithgall TE, Harvey RG, Penning TM (1988) Oxidation of the trans-3,4-dihydrodiol metabolites of the potent carcinogen 7,12-dimethylbenz(a)anthracene and other benz(a)anthracene derivatives by 3 alpha-hydroxysteroid-dihydrodiol dehydrogenase: effects of methyl substitution on velocity and stereochemical course of trans-dihydrodiol oxidation. Cancer Res 48(5):1227–1232

    CAS  PubMed  Google Scholar 

  • Snyder R (2012) Leukemia and benzene. Int J Environ Res Public Health 9(8):2875–2893

    PubMed Central  CAS  PubMed  Google Scholar 

  • Snyder RD, Van Houten B (1986) Genotoxicity of formaldehyde and an evaluation of its effects on the DNA repair process in human diploid fibroblasts. Mutat Res 165(1):21–30

    CAS  PubMed  Google Scholar 

  • Snyder CA, Goldstein BD, Sellakumar AR et al (1980) The inhalation toxicology of benzene: incidence of hematopoietic neoplasms and hematotoxicity in ARK/J and C57BL/6 J mice. Toxicol Appl Pharmacol 54(2):323–331

    CAS  PubMed  Google Scholar 

  • Snyder CA, Sellakumar AR, James DJ et al (1988) The carcinogenicity of discontinuous inhaled benzene exposures in CD-1 and C57Bl/6 mice. Arch Toxicol 62(5):331–335

    CAS  PubMed  Google Scholar 

  • Soffritti M, Maltoni C, Maffei F et al (1989) Formaldehyde: an experimental multipotential carcinogen. Toxicol Ind Health 5(5):699–730

    CAS  PubMed  Google Scholar 

  • Soffritti M, Belpoggi F, Lambertin L et al (2002) Results of long-term experimental studies on the carcinogenicity of formaldehyde and acetaldehyde in rats. Ann N Y Acad Sci 982:87–105

    CAS  PubMed  Google Scholar 

  • Solomon DA, Kim T, Diaz-Martinez LA et al (2011) Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333:1039–1043

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sorahan T (2011) Occupational benzene exposure and lymphoma risk. Environ Health Perspect 119(11):A468–A469

    PubMed Central  PubMed  Google Scholar 

  • Speit G, Merk O (2002) Evaluation of mutagenic effects of formaldehyde in vitro: detection of cross links and mutations in mouse lymphoma cells. Mutagenesis 17(3):183–187

    CAS  PubMed  Google Scholar 

  • Speit G, Schütz P, Merk O (2000) Induction and repair of formaldehyde-induced DNA cross links in repair deficient human cell lines. Mutagenesis 15(1):85–90

    CAS  PubMed  Google Scholar 

  • Table II (exposure media and potential for Children’s exposure) of USEPA BaP summary (2007) Available at http://www.epa.gov/teach/chem_summ/B[a]P_summary.pdf (compilation of Information reflecting the statement in the text described in this table was derived from several resources including studies listed in the TEACH Database (http://www.epa.gov/teach)

  • Tao L, Xiang YB, Wang R (2010) Environmental tobacco smoke in relation to bladder cancer risk–the Shanghai bladder cancer study [corrected]. Cancer Epidemiol Biomarkers Prev 19(12):3087–3095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson CM, Sonawane B, Grafström RC (2009) The ontogeny, distribution, and regulation of alcohol dehydrogenase 3: implications for pulmonary physiology. Drug Metab Dispos 37(8):1565–1571

    CAS  PubMed  Google Scholar 

  • Toh CK, Gao F, Lim WT et al (2006) Never-smokers with lung cancer: epidemiologic evidence of a distinct disease entity. J Clin Oncol 24(15):2245–2251

    PubMed  Google Scholar 

  • Trichopoulos D, Kalandidi A, Sparros L et al (1981) Lung cancer and passive smoking. Int J Cancer 27(1):1–4

    CAS  PubMed  Google Scholar 

  • Tyihák E, Bocsi J, Timár F et al (2001) Formaldehyde promotes and inhibits the proliferation of cultured tumour and endothelial cells. Cell Prolif 34(3):135–141

    PubMed  Google Scholar 

  • Ura H, Nowak P, Litwin S et al (1989) Effects of formaldehyde on normal xenotransplanted human tracheobronchial epithelium. Am J Pathol 134(1):99–106

    PubMed Central  CAS  PubMed  Google Scholar 

  • US EPA (1992) Respiratory health effects of passive smoking: lung cancer and other disorders. EPA, Washington, DC. oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=36793

  • US EPA (2009) List of priority chemicals in united states. Available at http://www.epa.gov/oSW/hazard/wastemin/priority.htm

  • Vineis P, Alavanja M, Garte S et al (2004) Dose–response relationship in tobacco-related cancers of bladder and lung: a biochemical interpretation. Int J Cancer 108(1):2–7

    CAS  PubMed  Google Scholar 

  • Waidyanatha S, Rothman N, Fustinoni S et al (2001) Urinary benzene as a biomarker of exposure among occupationally exposed and unexposed subjects. Carcinogenesis 22(2):279–286

    CAS  PubMed  Google Scholar 

  • Wakelee HA, Chang ET, Gomez SL et al (2007) Lung cancer incidence in never smokers. J Clin Oncol 25(5):472–478

    PubMed Central  PubMed  Google Scholar 

  • Wallace L (1996) Environmental exposure to benzene: an update. Environ Health Perspect 104(Suppl 6):1129–1136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weaver VM, Buckley TJ, Groopman JD et al (1998) Approaches to environmental exposure assessment in children. Environ Health Perspect 106(Suppl 3):827–832

    PubMed Central  PubMed  Google Scholar 

  • Wester PW, Muller JJ, Slob W et al (2011) Carcinogenic activity of benzo[a]pyrene in a 2 year oral study in Wistar rats. Food Chem Toxicol 50(3–4):927–935

    PubMed  Google Scholar 

  • Wickramasinghe AP, Karunaratne DG, Sivakanesan R (2012) M(10)-bound polycyclic aromatic hydrocarbons: biological indicators, lung cancerrisk of realistic receptors and ‘source-exposure-effect relationship’ under different source scenarios. Chemosphere 87(11):1381–1387

    CAS  PubMed  Google Scholar 

  • Wilkins RJ, Macleod HD (1976) Formaldehyde induced DNA-protein crosslinks in Escherichia coli. Mutat Res 36(1):11–16

    CAS  PubMed  Google Scholar 

  • Williams PR, Panko JM, Unice K et al (2008) Occupational exposures associated with petroleum-derived products containing trace levels of benzene. J Occup Environ Hyg 5(9):565–574

    CAS  PubMed  Google Scholar 

  • Win LM (2003) Homologous recombination initiated by benzene metabolites: potential role of oxidative stress. Toxicol Sci 72:143–149

    Google Scholar 

  • Witschi H (2003) Induction of lung cancer by passive smoking in an animal model system. Methods Mol Med 74:441–455

    PubMed  Google Scholar 

  • World Health Organization (2009) Report on the global tobacco epidemic, implementing smoke-free environments. http://whqlibdoc.who.int/publications/2009/9789241563918_eng_full.pdf

  • World Health Organization (WHO) News release (2011) Tackling the global clean air challenge. http://www.who.int/mediacentre/news/releases/2011/air_pollution_20110926/en/index.html

  • Wu JY, Wang J, Lai JC et al (2008) Association of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation with p53 mutation occurrence in non-small cell lung cancer with different histology, gender, and smoking status. Ann Surg Oncol 11:3272–3277

    Google Scholar 

  • Xing C, Wang QF, Li B, Tian H et al (2010) Methylation and expression analysis of tumor suppressor genes p15 and p16 in benzene poisoning. Chem Biol Interact 184(1–2):306–309

    CAS  PubMed  Google Scholar 

  • Yamamoto ML, Chapman AM, Schiest RH (2013) Effects of side stream tobacco smoke and smoke extract on glutathione- and oxidative DNA damage repair-deficient mice and blood cells. Mutat Res 749(1–2):58–65

    CAS  PubMed  Google Scholar 

  • Yeowell-O’Connell K, Rothman N, Smith MT et al (1998) Hemoglobin and albumin adducts of benzene oxide among workers exposed to high levels of benzene. Carcinogenesis 19(9):1565–1571

    PubMed  Google Scholar 

  • Yeowell-O’Connell K, Rothman N, Waidyanatha S et al (2001) Protein adducts of 1,4-benzoquinone and benzene oxide among smokers and nonsmokers exposed to benzene in China. Cancer Epidemiol Biomarkers Prev 10(8):831–838

    PubMed  Google Scholar 

  • Yu Z, Loehr CV, Fischer KA et al (2006a) In utero exposure of mice to dibenzo[a, l]pyrene produces lymphoma in the offspring: role of the aryl hydrocarbon receptor. Cancer Res 66(2):755–762

    CAS  PubMed  Google Scholar 

  • Yu Z, Mahadevan B, Löhr CV et al (2006b) Indole-3-carbinol in the maternal diet provides chemoprotection for the fetus against transplacental carcinogenesis by the polycyclic aromatic hydrocarbon dibenzo[a, l]pyrene. Carcinogenesis 27(10):2116–2123

    CAS  PubMed  Google Scholar 

  • Yu K, Shi YF, Yang KY et al (2011) Decreased topoisomerase IIα expression and altered histone and regulatory factors of topoisomerase IIα promoter in patients with chronic benzene poisoning. Toxicol Lett 203(2):111–117

    CAS  PubMed  Google Scholar 

  • Zar HL, Ferkol TW (2014) The global burden of respiratory disease-impact on child health. Pediatr Pulmonol 49(5):430–434

    PubMed  Google Scholar 

  • Zhang L, Rothman N, Wang Y et al (1998) Increased aneusomy and long arm deletion of Chromosomes 5 and 7 in the lymphocytes of Chinese workers exposed to benzene. Carcinogenesis 19(11):1955–1961

    CAS  PubMed  Google Scholar 

  • Zhang L, Lan Q, Guo W et al (2005) Use of octochrome fluorescence in situ hybridization to detect specific aneuploidy among all 24 chromosomes in benzene-exposed workers. Chem Biol Interact 153–154:117–122

    PubMed  Google Scholar 

  • Zhang L, Steinmaus C, Eastmond DA et al (2009a) Formaldehyde exposure and leukemia: a new meta-analysis and potential mechanisms. Mutat Res 681:150–168

    CAS  PubMed  Google Scholar 

  • Zhang Y, Tao S, Shen H et al (2009b) Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. Proc Natl Acad Sci U S A 106(50):21063–21067

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Tang X, Rothman N et al (2010) Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol Biomarkers Prev 19:80–88

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Lan Q, Guo W et al (2011) Chromosome-wide aneuploidy study (CWAS) in workers exposed to an established leukemogen benzene. Carcinogenesis 32(4):605–612

    PubMed Central  PubMed  Google Scholar 

  • Zhong W, Que Hee SS (2004) Formaldehyde-induced DNA adducts as biomarkers of in vitro human nasal epithelial cell exposure to formaldehyde. Mutat Res 563(1):13–24

    CAS  PubMed  Google Scholar 

  • Zienolddiny S, Ryberg D, Svendsrud DH et al (2006) Msh2 deficiency increases susceptibility to benzo[a]pyrene-induced lymphomagenesis. Int J Cancer 118(11):2899–2902

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author expresses sincere appreciation to Drs. George Woodall, Sury Vulimiri, Jason Fitz, Kathleen Newhouse, Yu-Sheng Lin and Bob Sonawane of NCEA, EPA for their critical review and helpful suggestions during the preparation of the manuscript. Sincere appreciation is also for NCEA management for allowing me to take up this task and helping me throughout the agency clearance process.

Disclaimer

The views expressed in this Chapter are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Mudipalli Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Mudipalli, A. (2015). Airborne Carcinogens: Mechanisms of Cancer. In: Nadadur, S., Hollingsworth, J. (eds) Air Pollution and Health Effects. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6669-6_6

Download citation

Publish with us

Policies and ethics