Skip to main content

Reactive Ambient Particles

  • Chapter
Air Pollution and Health Effects

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

One of the major causative factors for adverse human health outcomes following exposure to ambient airborne particulate matter (PM) is oxidative stress. Thus, it is necessary to examine how particles can induce oxidative stress and since oxidizing species typically react quickly, it then points toward particles that are chemically reactive that are likely to be important as drivers of health effects. Reactive particles can provide oxidants in two ways. There can be exogenous reactive oxygen species (ROS) that are formed through the formation mechanisms of secondary organic aerosol (SOA) and be transported as part of the particle into the respiratory system. Alternatively, particles can include reactive species that can form oxidant in situ (endogenous ROS) that then react with the lung tissues to induce inflammation and stress. This chapter will review the formation chemistry of both exogenous and endogenous ROS and what is known about the potential of ambient PM to induce oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri KE, Carlton AG, Lim HJ, Turpin BJ, Seitzinger SP (2006) Evidence for oligomer formation in clouds: reactions of isoprene oxidation products. Environ Sci Technol 40:4956–4960

    CAS  PubMed  Google Scholar 

  • Altieri KE, Seitzinger SP, Carlton AG, Turpin BJ, Klein GC, Marshall AG (2008) Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry. Atmos Environ 42:1476–1490

    CAS  Google Scholar 

  • Andersson-Skold Y, Simpson D (2001) Secondary organic aerosol formation in northern Europe: a model study. J Geophys Res 106:7357–7374

    CAS  Google Scholar 

  • Antilla P, Rissanen T, Shimmo M, Kallio M, Hyotylainen T, Kulmala M, Riekkola ML (2005) Organic compounds in atmospheric aerosols from a Finnish coniferous forest. Boreal Environ Res 10:371–384

    Google Scholar 

  • Arellanes C, Paulson SE, Fine PM, Sioutas C (2006) Exceeding of Henry’s law by hydrogen peroxide associated with urban aerosols. Environ Sci Tech 40:4859–4866

    CAS  Google Scholar 

  • Aschmann SM, Arey J, Atkinson R (2002) OH radical formation from the gas-phase reactions of O3 with a series of terpenes. Atmos Environ 36:4347–4355

    CAS  Google Scholar 

  • Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    CAS  PubMed  Google Scholar 

  • Atkinson R, Aschmann SM (1993) Hydroxyl radical production from the gas-phase reactions of ozone with a series of alkenes under atmospheric conditions. Environ Sci Tech 27:1357–1363

    CAS  Google Scholar 

  • Atkinson R, Tuazon EC, Aschmann SM (1995) Products of the gas-phase reactions of O3 with alkenes. Environ Sci Tech 29:1860–1866

    CAS  Google Scholar 

  • Aust SD (1989) Metal ions, oxygen radicals and tissue damage. Bibl Nutr Dicta 43:266–277

    Google Scholar 

  • Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A et al (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report and consensus statement. Inhal Toxicol 20:75–99

    CAS  PubMed  Google Scholar 

  • Azzi A, Davies KJA, Kelly F (2004) Free radical biology: terminology and critical thinking. FEBS Lett 558:3–6

    CAS  PubMed  Google Scholar 

  • Bartold PM, Wiebkin OW, Thonard JC (1984) The effect of oxygen-derived free radicals on gingival proteoglycans and hyaluronic acid. J Periodontol 19:390–400

    CAS  Google Scholar 

  • Calvert JG, Atkinson R, Keer JA, Madronich S, Moortgat GK, Wallington TJ, Yarwood G (2000) The mechanisms of atmospheric oxidation of the alkenes. Oxford University Press, New York

    Google Scholar 

  • Carlton AG, Turpin BJ, Lim HJ, Altieri KE, Seitzinger S (2006) Link between isoprene and secondary organic aerosol (SOA): pyruvic acid oxidation yields low volatility organic acids in clouds. Geophys Res Lett 33, L06822

    Google Scholar 

  • Carlton AG, Turpin BJ, Altieri KE, Seitzinger S, Reff A, Lim H-J et al (2007) Atmospheric oxalicacid and SOA production from glyoxal: results of aqueous photooxidation experiments. Atmos Environ 41:7588–7602

    Google Scholar 

  • Chapple IL (1997) Reactive oxygen species and antioxidants in inflammatory diseases I. J Clin Periodontol 24:287–296

    CAS  PubMed  Google Scholar 

  • Chen X, Hopke PK (2009a) Secondary organic aerosol from α-pinene ozonolysis in dynamic chamber system. Indoor Air 19:335–345

    CAS  PubMed  Google Scholar 

  • Chen X, Hopke PK (2009b) A chamber study of secondary organic aerosol formation by linalool ozonolysis. Atmos Environ 43:3935–3940

    CAS  Google Scholar 

  • Chen X, Hopke PK (2010) A chamber study of secondary organic aerosol formation by limonene ozonolysis. Indoor Air 20:320–328

    PubMed  Google Scholar 

  • Chen X, Hopke PK, Carter WPL (2011) Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: chamber studies of particle and reactive oxygen species formation. Environ Sci Technol 45:276–282

    CAS  PubMed  Google Scholar 

  • Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, Eiguren-Fernandez A, Froines JR (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res 99:40–47

    CAS  PubMed  Google Scholar 

  • Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004a) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176

    CAS  PubMed  Google Scholar 

  • Claeys M, Wang W, Ion AC, Kourtchev I, Gelencsér A, Maenhaut W (2004b) Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos Environ 38:4093–4098

    CAS  Google Scholar 

  • Docherty KS, Wu W, Lim YB, Ziemann PJ (2005) Contributions of organic peroxides to secondary organic aerosol formed from reactions of monoterpenes with O3. Environ Sci Tech 39:4049–4059

    CAS  Google Scholar 

  • Eiserich JP, van der Vliet A, Handelman GJ, Halliwell B, Cross CE (1995) Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Am J Clin Nutr 62(Suppl):1490–1500

    Google Scholar 

  • El Haddad I, Yao L, Nieto-Gligorovski L, Michaud V, Temime-Roussel B, Quivet E et al (2009) In-cloud processes of methacrolein under simulated conditions – part 2: formation of secondary organic aerosol. Atmos Chem Phys 9:5107–5117

    Google Scholar 

  • Fairfull-Smith KE, Bottle SE (2008) The synthesis and physical properties of novel polyaromatic profluorescent isoindoline nitroxide probes. Eur J Org Chem 32:5391–5400

    Google Scholar 

  • Faruque MO, Khan MR, Rahman M, Ahmed F (1995) Relationship between smoking and antioxidant nutrient status. Br J Nutr 73:625–632

    CAS  PubMed  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory, experiments and applications. Academic, San Diego

    Google Scholar 

  • Frampton MW (2001) Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans. Environ Health Perspect 109(suppl 4):529–532

    PubMed Central  CAS  PubMed  Google Scholar 

  • Friedlander SK, Yeh EK (1998) The submicron atmospheric aerosol as a carrier of reactive chemical species: case of peroxides. Appl Occup Environ Hyg 13(6):416–420

    CAS  Google Scholar 

  • Gao S, Keywood M, Ng NL, Surratt J, Varutbangkul V, Bahreini R, Flagan RC, Seinfeld JH (2004a) Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkanes and α-pinene. J Phys Chem A 108:10147–10164

    CAS  Google Scholar 

  • Gao S, Ng NL, Keywood M, Varutbangkul V, Bahreini R, Nenes A, He J, Yoo KY, Beauchamp JL, Hodyss RP, Flagan RC, Seinfeld JH (2004b) Particle phase acidity and oligomer formation in secondary organic aerosol. Environ Sci Tech 38:6582–6589

    CAS  Google Scholar 

  • Gao S, Surratt JD, Knipping EM, Edgerton ES, Shahgholi M, Seinfeld JH (2006) Characterization of polar organic components in fine aerosols in the southeastern United States: identity, origin and evolution. J Geophys Res 111, D14314

    Google Scholar 

  • Geron C, Rasmussen R, Arnts RR, Guenther A (2000) A review and synthesis of monoterpene speciation from forests in the United States. Atmos Environ 34:1761–1781

    CAS  Google Scholar 

  • Glasius M, Duane M, Larsen BR (1999) Analysis of polar terpene oxidation products in aerosols by liquid chromatography ion trap mass spectrometry (MSn). J Chromatogr 833:121–135

    CAS  Google Scholar 

  • Glasius M, Lahaniati M, Calogirou A, Di Bella D, Jensen NR, Hjorth J, Kotzias D, Larsen BR (2000) Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. Environ Sci Tech 34:1001–1010

    CAS  Google Scholar 

  • Godri KJ, Duggan ST, Fuller GW, Baker T, Green D, Kelly FJ et al (2010) Particulate matter oxidative potential from waste transfer station activity. Environ Health Perspect 118:493–498

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80

    CAS  PubMed  Google Scholar 

  • Guenther A, Geron C, Pierce T, Lamb B, Harley P, Fall R (2000) Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos Environ 34:2205–2230

    CAS  Google Scholar 

  • Gurgueira SA, Lawrence J, Coull B, Murthy GGK, Gonzales-Flecha B (2002) Rapid increase in the steady state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Prospect 110:749–755

    CAS  Google Scholar 

  • Hasson AS, Paulson SE (2003) An investigation of the relationship between gas-phase and aerosol-bourne hydroperoxides in urban air. J Aerosol Sci 34:459–468

    CAS  Google Scholar 

  • Hasson AS, Ho AW, Kuwata KT, Paulson SE (2001a) Production of stabilized criegee intermediate and peroxides in the gas phase ozonolysis of alkenes: 2. Asymmetric and biogenic alkenes. J Geophys Res D 106:34143–34152

    CAS  Google Scholar 

  • Hasson AS, Orzechowska GE, Paulson SE (2001b) Production of stabilized criegee intermediate and peroxides in the gas-phase ozonolysis of alkenes: 1. Ethene, Trans-2-Butene and 2,3-Dimethyl-2-Butene. J Geophys Res D 106(24):34131–34142

    CAS  Google Scholar 

  • HEI (2002) Understanding the health effects of components of the particulate matter Mix: progress and next steps, Health effects institute perspectives series. Health Effects Institute, Boston

    Google Scholar 

  • Hoffmann T (2001) Final report of the 5th framework programme of the EU project OSOA (origin and formation of secondary organic aerosol), contract EVK2-CT-1999-00016. Available via the ftp: http://www.isas-dortmund.de/2002/e/staff/hoffmann/osoa/index.html

  • Hoffmann T, Odum JR, Bowman F, Collins D, Klockow D, Flagan RC, Seinfeld JH (1997) Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Chem 26:189–222

    CAS  Google Scholar 

  • Hopke PK (2008) New directions: reactive particles as a source of human health effects. Atmos Environ 42:3192–3194

    CAS  Google Scholar 

  • Hopke PK, Rosser A (2006) Exposure to airborne particulate matter in the ambient. Indoor and occupational environments. Clin Occup Environ Med 5:747–771

    PubMed  Google Scholar 

  • Hung HF, Wang CS (2001) Experimental determination of reactive oxygen species in Taipei aerosols. J Aerosol Sci 32:1201–1211

    CAS  Google Scholar 

  • Jang M, Kamens RM (1999) Newly characterized products and compositions of secondary aerosols from reaction of α-pinene with ozone. Atmos Environ 33:459–474

    Google Scholar 

  • Jonsson AM, Hallquist M, Ljungstrom E (2006) Impact of humidity on the ozone initiated oxidation of limonene, Δ3-carene and α-pinene. Environ Sci Tech 40:188–194

    CAS  Google Scholar 

  • Kamens R, Jang M, Chien C, Leach K (1999) Aerosol formation from the reaction of a-pinene and ozone using a gas phase kinetics aerosol partitioning model. Environ Sci Technol 33:1430–1438

    CAS  Google Scholar 

  • King LE, Weber RJ (2013) Development and testing of an online method to measure ambient fine particulate reactive oxygen species (ROS) based on the 2’, 7’-dichlorofluorescin (DCFH) assay. Atmos Meas Tech 6:1647–1658

    CAS  Google Scholar 

  • Kodavanti UP, Schladweiler MC, Ledbetter AD, Hauser R, Christiani DC, McGee J, Richards JR, Costa DL (2002) Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats. J Toxicol Environ Health A 65:1545–1569

    CAS  PubMed  Google Scholar 

  • Kroll JH, Seinfeld JH (2008) Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos Environ 42:3593–3624

    CAS  Google Scholar 

  • Kuo M-L, Jee S-H, Chou M-H, Ueng T-H (1998) Involvement of oxidative stress in motorcycle exhaust particle-induced DNA damage and inhibition of intercellular communication. Mutat Res 413:143–150

    CAS  PubMed  Google Scholar 

  • Landreman AP, Shafer MM, Hemming JC, Hannigan MP, Schauer JJ (2008) A macrophage-based method for the assessment of the reactive oxygen species (ROS) activity of atmospheric particulate matter (PM) and application to routine (daily-24 h) aerosol monitoring studies. Aerosol Sci Tech 42:946–957

    CAS  Google Scholar 

  • Larsen BR, Lahaniati M, Calogirou A, Kotzias D (1998) Atmospheric oxidation products of terpenes: a new nomenclature. Chemosphere 37:1207–1220

    CAS  Google Scholar 

  • Li T-H, Turpin BJ, Shields HC, Weschler CJ (2002) Indoor hydrogen peroxide derived from ozone/d-limonene reactions. Environ Sci Technol 36:3295–3302

    CAS  PubMed  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley J, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, El Haddad I, Scarfogliero M, Nieto-Gligorovski L, Temime-Roussel B, Quivet E et al (2009) In-cloud processes of methacrolein under simulated conditions – part 1: aqueous phase photooxidation. Atmos Chem Phys 9:5093–5105

    CAS  Google Scholar 

  • Michaud V, El Haddad I, Liu Y, Sellegri K, Laj P, Villani P et al (2009) In-cloud processes of methacrolein under simulated conditions – part 3: hygroscopic and volatility properties of the formed secondary organic aerosol. Atmos Chem Phys 9:5119–5130

    CAS  Google Scholar 

  • Mudway IS, Stenfors N, Duggan ST, Roxborough H, Zielinski H, Marklund SL, Blomberg A, Frew AJ, Sandstrom T, Kelly FJ (2004) An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Archives Biochem Biophys 423:200–212

    CAS  Google Scholar 

  • Nadadur SS, Haykal-Coates N, Mudipalli A, Costa DL (2009) Endothelial effects of emission source particles: acute toxic response gene expression profiles. Toxicol In Vitro 23:67–77

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF et al (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414

    CAS  PubMed  Google Scholar 

  • Ng NL, Kroll JH, Keywood MD, Bahreini R, Varubangkul V, Flagan RC, Seinfeld JH (2006) Contribution of first versus second generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons. Environ Sci Technol 40:2283–2297

    CAS  PubMed  Google Scholar 

  • Northcross AL, Jang M (2007) Heterogeneous SOA yield from ozonolysis of monoterpenes in the presence of inorganic acid. Atmos Environ 41:1483–1493

    CAS  Google Scholar 

  • Oberdörster G (1996) Significance of particle parameters in the evaluation of exposure-dose–response relationships of inhaled particles. Inhal Toxicol 8 Suppl:73–89

    PubMed  Google Scholar 

  • Odum JR, Hoffmann T, Bowman F, Collins D, Flagan RC, Seifeld JH (1996) Gas/particle partitioning and secondary organic aerosol yields. Environ Sci Tech 30:2580–2585

    CAS  Google Scholar 

  • Ortiz-Montalvo DL, Lim YB, Perri MJ, Seitzinger SP, Turpin BJ (2012) Volatility and yield of glycolaldehyde SOA formed through aqueous photochemistry and droplet evaporation. Aerosol Sci Tech 46:1002–1014

    CAS  Google Scholar 

  • Owen SM, Boissard C, Hewitt CN (2001) Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmos Environ 35:5393–5409

    CAS  Google Scholar 

  • Pavlovic J, Hopke PK (2011) Detection of radical species formed by the ozonolysis of α-pinene. J Atmos Chem 66:137–155

    Google Scholar 

  • Perri MJ, Seitzinger S, Turpin BJ (2009) Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: laboratory experiments. Atmos Environ 43:1487–1497

    CAS  Google Scholar 

  • Poulain L, Katrib Y, Isikli E, Liu Y, Wortham H, Mirabel P et al (2010) In-cloud multiphase behaviour of acetone in the troposphere: gas uptake, Henry’s law equilibrium and aqueous phase photooxidation. Chemosphere 81:312–320

    CAS  PubMed  Google Scholar 

  • Presto AA, Donahue NM (2006) Investigation of α-pinene + ozone secondary organic aerosol formation at low total aerosol mass. Environ Sci Tech 40:3536–3543

    CAS  Google Scholar 

  • Reemtsma T, These A, Venkatachari P, Xia XY, Hopke PK, Springer A, Linscheid M (2006) Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization. Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 78(24):8299–8304

    CAS  PubMed  Google Scholar 

  • Sameenoi Y, Panymeesamer P, Supalakorn N, Koehler K, Chailapakul O, Henry CS, Volckens J (2013) Microfluidic paper-based analytical device for aerosol oxidative activity. Environ Sci Technol 47:932–940

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, Hoboken

    Google Scholar 

  • Seinfeld JH, Pankow JF (2003) Organic atmospheric particulate material. Annu Rev Phys Chem 54:121–140

    CAS  PubMed  Google Scholar 

  • Squadrito GL, Cueto R, Dellinger B, Pryor WA (2001) Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med 31(9):1132–1138

    CAS  PubMed  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 18:321–336

    CAS  Google Scholar 

  • Stohs SJ, Bagchi D, Bagchi M (1997) Toxicity of trace elements in tobacco smoke. Inhal Toxicol 9:867–890

    CAS  Google Scholar 

  • Strak M, Janssen NAH, Godri KJ, Gosens I, Mudway IS, Flemming C, Cassee R, Lebret E, Kelly FJ, Harrison RM, Brunekreef B, Steenhof M, Hoek G (2012) Respiratory health effects of airborne particulate matter: the role of particle size, composition, and oxidative potential—the RAPTES project. Environ Health Perspect 120:1183–1189

    PubMed Central  CAS  PubMed  Google Scholar 

  • Surratt JD, Murphy SM, Kroll JH, Ng NL, Hildebrandt L, Sorooshian A, Szmigielski R, Vermeylen R, Maenhaut W, Claeys M (2006) Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J Phys Chem A 110:9665–9690

    CAS  PubMed  Google Scholar 

  • Surratt JD, Chan AWH, Eddingsaas HE, Chan M, Loza CL, Kwan AJ, Hersey SS, Flagan RC, Wennberg PO, Seinfeld JH (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc Natl Acad Sci U S A 107:6640–6645

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, Itakura H, Yazaki Y, Horiuchi S, Takahashi K, Kruijt JK, van Berkel TJC, Steinbrecher UP, Ishibashi S, Maeda N, Gordon S, Kodama T (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296

    CAS  PubMed  Google Scholar 

  • Tan Y, Perri MJ, Seitzinger SP, Turpin BJ (2009) Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol. Environ Sci Technol 43:8105–8112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tan Y, Carlton AG, Seitzinger SP, Turpin BJ (2010) SOA from methylglyoxal in clouds and wet aerosols: measurement and prediction of key products. Atmos Environ 44:5218–5226

    CAS  Google Scholar 

  • Tan Y, Lim YB, Altieri KE, Seitzinger SP, Turpin BJ (2011) Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal. Atmos Chem Phys 12:801–813

    Google Scholar 

  • Tolocka MP, Jang M, Ginter JM, Cox FJ, Kamens RM, Johnston MV (2004) Formation of oligomers in secondary organic aerosol. Environ Sci Tech 38:1428–1434

    CAS  Google Scholar 

  • U.S. EPA (2009) Integrated science assessment for particulate matter. National Center for Environmental Assessment, Office of Research and Development, Research Triangle Park

    Google Scholar 

  • Utell MJ, Frampton MW (2000) Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J Aerosol Med 13:355–359

    CAS  PubMed  Google Scholar 

  • Varani J, Phan SH, Gibbs DF, Ryan US, Ward PA (1970) H2O2-mediated cytotoxicity of rat pulmonary endothelial-cells – changes in adenosine-triphosphate and purine products and effects of protective interventions. Lab Invest 63:683–689

    Google Scholar 

  • Venkatachari P, Hopke PK (2008) Development and laboratory testing of an automated monitor for the measurement of atmospheric particle-bound reactive oxygen species (ROS). Aerosol Sci Tech 42:629–635

    CAS  Google Scholar 

  • Venkatachari P, Hopke PK, Grover BD, Eatough DJ (2005) Measurement of particle-bound reactive oxygen species in Rubidoux aerosols. J Atmos Chem 50:49–58

    CAS  Google Scholar 

  • Venkatachari P, Hopke PK, Brune WH, Ren X, Lesher R, Mao J, Mitchell M (2007) Characterization of wintertime reactive oxygen species concentrations in Flushing, New York. Aerosp Sci Technol 41:97–111

    CAS  Google Scholar 

  • Verma V, Ning Z, Cho AK, Schauer JJ, Shafer MM, Sioutas C (2009) Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmos Environ 43:6360–6368

    CAS  Google Scholar 

  • Verma V, Shafer MM, Schauer JJ, Siotas C (2010) Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles. Atmos Environ 44:5165–5173

    CAS  Google Scholar 

  • Verma V, Pakbin P, Cheung KL, Cho AK, Schauer JJ, Shafer MM, Kleinman MT, Sioutas C (2011) Physicochemical and oxidative characteristics of semi-volatile components of quasi-ultrafine particles in an urban atmosphere. Atmos Environ 45:1025–1033

    CAS  Google Scholar 

  • Verma V, Rico-Martinez R, Kotra N, King L, Liu J, Snell TW, Weber RJ (2012) Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols. Environ Sci Technol 46:11384–11392

    CAS  PubMed  Google Scholar 

  • Wang Y, Hopke PK, Sun L, Chalupa DC, Utell MJ (2011) Laboratory and field testing of an automated atmospheric particle-bound reactive oxygen species sampling-analysis system. J Toxicol 2011:9. doi:10.1155/2011/419476

  • Wang Y, Arellanes C, Paulson SE (2012) Hydrogen peroxide associated with ambient fine-mode, diesel, and biodiesel aerosol particles in Southern California. Aerosol Sci Tech 46:394–402

    CAS  Google Scholar 

  • Warnke J, Bandur R, Hoffmann T (2006) Capillary-HPLC-ESI-MS/MS method for the determination of acidic products from the oxidation of monoterpenes in atmospheric aerosol samples. Anal Bioanal Chem 385:34–45

    CAS  PubMed  Google Scholar 

  • Warscheid B, Hoffmann T (2001) Structural elucidation of monoterpene oxidation products by ion trap fragmentation using on-line atmospheric pressure chemical ionization mass spectrometry in the negative ion mode. Rapid Commun Mass Spectrom 15:2259–2272

    CAS  PubMed  Google Scholar 

  • Warscheid B, Hoffmann T (2002) Direct analysis of highly oxidized organic aerosol constituents by on-line ion trap mass spectrometry in the negative-ion mode. Rapid Commun Mass Spectrom 16:496–504

    CAS  PubMed  Google Scholar 

  • Weschler CJ, Shields HC (1996) Production of hydroxyl radicals in indoor air. Environ Sci Technol 30:3250–3258

    CAS  Google Scholar 

  • Winterhalter R, Dingenen RV, Larsen BR, Jensen NR, Hjorth J (2003) LC-MS analysis of aerosol particles from the oxidation of α-pinene by ozone and OH-radicals. Atmos Chem Phys Discuss 3:1–39

    Google Scholar 

  • Xia X, Hopke PK (2006) Seasonal variation of 2-methyltetrols in ambient aerosol samples. Environ Sci Tech 40:6934–6937

    CAS  Google Scholar 

  • Yu J, Flagan RC, Seinfeld JH (1998) Identification of products containing –COOH, −OH and –C = O in atmospheric oxidation of hydrocarbons. Environ Sci Tech 32:2357–2370

    CAS  Google Scholar 

  • Zhang X, Chen ZM, Zhao Y (2010) Laboratory simulation for the aqueous OH-oxidation of methyl vinyl ketone and methacrolein: significance to the in-cloud SOA production. Atmos Chem Phys 10:9551–9561

    CAS  Google Scholar 

  • Ziemann PJ (2002) Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O3 with cyclohexene and homologous compounds. J Phys Chem A 106:4390–4402

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip K. Hopke MA, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Hopke, P.K. (2015). Reactive Ambient Particles. In: Nadadur, S., Hollingsworth, J. (eds) Air Pollution and Health Effects. Molecular and Integrative Toxicology. Springer, London. https://doi.org/10.1007/978-1-4471-6669-6_1

Download citation

Publish with us

Policies and ethics