Skip to main content

Creativity in Theoretical Physics

  • Chapter
  • First Online:
Creativity and Innovation Among Science and Art

Abstract

Creativity in theoretical physics is illustrated by breakthroughs ranging from the creation of the calculus by Newton to the invention of the neutrino by Pauli. The natural language of science is mathematics. Sometimes, physicists must expand this language, and usually, they take clues from it and its severe constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Ptolemy is an exception that proves the rule. His remarkably accurate tables for planetary motion were a tour-de-force of curve fitting. His rules of motion simply dictated using layers of circular motion, epicycles. His epicycles must be routinely updated, and each new solar system requires its own precisely tuned epicycles. It might seem universal if you only know about circles but it is not.

  2. 2.

    This was really a rediscovery, as it was even known by some Greeks.

  3. 3.

    It took Newton several years to define the center of mass, a precise definition for the point displayed in Fig. 5.1.

  4. 4.

    Until they do. Eventually, we get to the details.

  5. 5.

    Very few universal constants are known to twenty significant figures.

  6. 6.

    Unless we look.

  7. 7.

    This is drastically oversimplified.

  8. 8.

    This last part became so difficult that physics divided into theoretical and experimental physics.

References

  • Aristotle (350 B.C.E.). Physica.

    Google Scholar 

  • Aristotle, Ross, W. D., & Hardie, R.P. (1962). Works of Aristotle: Physica. Oxford: Clarendon Press.

    Google Scholar 

  • Copernicus, N. (1543). De Revolutionibus orbium coelestium.

    Google Scholar 

  • Copernicus, N. (1959). De revolutionibus orbium coelestium, 1543. On the revolutions.

    Google Scholar 

  • De Broglie, L. (1924a). Recherches sur la théorie des quanta. Ph.D. thesis, Sorbonne, Paris, France.

    Google Scholar 

  • De Broglie, L. (1924b). Recherches sur la théorie des quanta (Doctoral dissertation, Migration-université en cours d’affectation).

    Google Scholar 

  • Descartes, R. (1637). Discourse on method, optics, geometry and meteorology.

    Google Scholar 

  • Descartes, R. (1637/2006). Discourse on method, optics, geometry, and meteorology. New York: Oxford University Press.

    Google Scholar 

  • Descartes, R. (2001). Discourse on method, optics, geometry, and meteorology. Indianapolis: Hackett Publishing.

    Google Scholar 

  • Einstein, A. (1905a). Zur Elektrodynamik bewegter Korper. Annalen der Physik, 17, 891.

    Article  MATH  Google Scholar 

  • Einstein, A. (1905b). Zur elektrodynamik bewegter körper. Annalen der Physik, 322(10), 891–921.

    Article  Google Scholar 

  • Einstein, A. (1905c). Uber einen die Erzeugang und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17, 132.

    Article  MATH  Google Scholar 

  • Einstein, A. (1905d). Ãœber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 322(6), 132–148.

    Article  Google Scholar 

  • Galilei, G. (1953). Dialogue concerning the two chief world systems, Ptolemaic and Copernican. New York: Random House LLC.

    Google Scholar 

  • Galileo, G. (1632). Dialogue concerning the two chief world systems.

    Google Scholar 

  • Maxwell, J. C. (1863). A dynamical theory of the electromagnetic field. Proceedings of the Royal Society of London, 13, 531–536.

    Article  Google Scholar 

  • Maxwell, J. (1865). A dynamical theory of the electromagnetic field.

    Google Scholar 

  • Newton, I. (1687). Philosophiae naturalis principia mathematica.

    Google Scholar 

  • Newton, I. (1687/1999). Philosophiae naturalis principia mathematica. Berkeley and Los Angeles: University of California.

    Google Scholar 

  • Newton, I., Bernoulli, D., MacLaurin, C., & Euler, L. (1833). Philosophiae naturalis principia mathematica (Vol. 1). excudit G. Brookman; impensis TT et J. Tegg, Londini.

    Google Scholar 

  • Pauli, W. (1930a). Public letter.

    Google Scholar 

  • Pauli, W. (1930b, December 4).  Letter to a physicists’ gathering at Tubingen. In R. Kronig & V. Weisskopf (Eds). Collected scientific papers (Vol. 2, pp. 1313).

    Google Scholar 

  • Schrödinger , E. (1926a). Quantisierung als eigenwertproblem. Annalen der Physik, 79, 361.

    Article  MATH  Google Scholar 

  • Schrödinger, E. (1926b). Quantisierung als eigenwertproblem. Annalen der physik, 385(13), 437–490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Perry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Perry, R.J. (2015). Creativity in Theoretical Physics. In: Charyton, C. (eds) Creativity and Innovation Among Science and Art. Springer, London. https://doi.org/10.1007/978-1-4471-6624-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6624-5_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6623-8

  • Online ISBN: 978-1-4471-6624-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics