Skip to main content

Embedded Smarthouse Bathroom Entertainment Systems for Improving Quality of Life

  • Chapter
  • First Online:
Entertaining the Whole World

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

The phrase “Smarthouse to improve the smartness of a human’s daily life” has two meanings. One is to improve individual smartness, which represents the Quality of Life (QoL); the other is to improve social smartness, which includes human communications and social consumptions. This chapter primarily describes entertainment systems that can be embedded particularly in the bathrooms of smarthouses and used by humans in everyday life to improve QoL. The systems include “Bathonify,” a sonification system that reflects the bathing states and vital signs of the bather; “TubTouch,” a bathtub entertainment system that uses embedded touch sensors and a projector to control various equipment and systems; and “Bathcratch,” a DJ scratching music system that is operated by rubbing and touching the bathtub. Even though these systems are based on Japanese bathing culture and style, they provide advances in the pleasures of everyday life. In addition, these embedded systems and their techniques provide advances in computer entertainment platforms that can be extended to various places and situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    TubTouch Example 1: http://www.youtube.com/watch?v=lDKR6rTwobM.

  2. 2.

    TubTouch Example 2: http://www.youtube.com/watch?v=oiKocZ1IORw.

  3. 3.

    Bathcratch movie 1: http://www.youtube.com/watch?v=kp_0rPx-RSY.

  4. 4.

    Bathcratch movie 2: http://www.youtube.com/watch?v=g-Z0visXQwo.

References

  • Andersen, T. H. (2003). Mixxx: Towards novel DJ interfaces. Proceedings NIME03, pp. 30–35.

    Google Scholar 

  • Beamish, T., Maclean, K., & Fels, S. (2003). Manipulating Music: Multimodal interaction for DJs. Proceedings CHI, 327–334.

    Google Scholar 

  • Benko, H., & Wilson, A. D.. (2010). Multi-point interactions with immersive omnidirectional visualizations in a dome. Proceedings of ACM international conference on interactive tabletops and surfaces, pp. 19–28.

    Google Scholar 

  • Benko, H., Wilson, A. D., & Balakrishnan, R. (2008). Sphere: Multi-touch interactions on a spherical display. Proceedings of UIST2008, pp. 77–86.

    Google Scholar 

  • Dahley, A., Wisneski, C., & Ishii, H. (1998). Water lamp and pinwheels: Ambient projection of digital information into architectural space. Proceedings of CHI '98, pp. 269–270.

    Google Scholar 

  • Dietz, P., & Leigh, D. (2001). DiamondTouch: A multiuser touch technology. Proceedings of the 14th annual ACM symposium on user interface software and technology, pp. 219–226.

    Google Scholar 

  • Fukuchi, K. (2007). Multi-track scratch player on a multi-touch sensing device. Proceedings ICEC (LNCS 4740), pp. 211–218.

    Google Scholar 

  • Fukuchi, K., & Rekimoto, J. (2002). Interaction techniques for smartSkin. Proceedings of UIST2002.

    Google Scholar 

  • Hansen, K. F.. (2010). The acoustics and performance of DJ scratching, Analysis and modeling. Doctral Thesis, KTH, Stockholm, Sweden.

    Google Scholar 

  • Hansen, K. F., & Alonso, M. (2008). More DJ techniques on the reactable. Proceedings of 8th international conference on new interfaces for musical expression, pp. 207–210.

    Google Scholar 

  • Harrison, C., & Hudson, S. E. (2008). Scratch input: Creating large, inexpensive, unpowered and mobile finger input surfaces. Proceedings UIST'08, pp. 205–208.

    Google Scholar 

  • Hansen, K. F., Alonso, M., & Dimitrov, S. (2007). Combining DJ scratching, tangible interfaces and a physics-based model of friction sounds. Proceedings of the international computer music conference, pp. 45–48.

    Google Scholar 

  • Harrison, C., Tan, D., & Morris, D. (2010). Skinput: Appropriating the body as an input surface. Proceedings CHI, pp. 453–462.

    Google Scholar 

  • Hayafuchi, K., & Suzuki, K. (2008). MusicGlove: A wearable musical controller for massive media library. Proceedings of 8th International conference on new interfaces for musical expression.

    Google Scholar 

  • Hirai, S., & Ueda, H. (2011). Towards a user-experience research in a living laboratory? Home (KSU-iHome). Proceedings of SI2011. (In Japanese).

    Google Scholar 

  • Hirai, S., Fujii, G., Sakonda, N., & Inokuchi, S. (2004). Bathroom toward a new amenity space: Bath system representing bathing states by sounds. Journal of Human Interface Society, 6(3), 287–294. (In Japanese).

    Google Scholar 

  • Hirai, S., Sakakibara, Y., & Hayakawa, S.. (2012). Bathcratch: Touch and sound-based DJ controller implemented on a bathtub. Proceedings of ACE 2012, pp. 44–56.

    Google Scholar 

  • Hirai, S., Sakakibara, Y., & Hayahshi, H.. (2013). Enabling interactive bathroom entertainment using embedded touch sensors in the bathtub. Proceedings of ACE 2013, pp. 544–547.

    Google Scholar 

  • Intille, S. S., Larson, K., Beaudin, J., Munguia, T. E., Kaushik, P., Nawyn, J., McLeish, T. J. (2005). The placelab: A live-in laboratory for pervasive computing research (Video). Proceedings of Pervasive 2005 Video Program.

    Google Scholar 

  • Ishii, H., & Ulmer, B. (1997). Tangible bits: Towards seamless interfaces between people, bits and atoms. Proceedings of CHI '97, pp. 234–241.

    Google Scholar 

  • Kaltenbrunner, M. (2009). reacTIVision and TUIO: A tangible tabletop toolkit. Proceedings of ITS2009, pp. 9–16.

    Google Scholar 

  • Kidd, C. D., Orr, R. J., Abowd, G. D., Atkeson, C. G., Essa, I. A., MacIntyre, B., Mynatt, E., Starner T. E., & Newstetter, W. (1999). Proceedings of the second international workshop on cooperative buildings-cobuild'99.

    Google Scholar 

  • Koike, H., Matoba, Y., & Takahashi, Y. (2012). AquaTop display: Interactive water surface for viewing and manipulating information in a bathroom. Proceedings of ITS 2012, pp. 155–164.

    Google Scholar 

  • Lopes, P., Jota, R., & Jorge, J. A. (2011). Augmenting touch interaction through acoustic sensing. Proceedings ITS'11, pp. 53–56.

    Google Scholar 

  • Mason, R., Jennings, L., & Evans, R. (1983). XANADU: The computerized home of tomorrow and how it can be yours today! Washington, D.C.: Acropolis Books.

    Google Scholar 

  • Moroi, S. (2004). Sound flakes. Proceedings of SIGGRAPH 2004 Emerging Technologies, pp. 25.

    Google Scholar 

  • Murray-Smith, R., Williamson, J., Hughes, S., & Quaade, T. (2008). Stane: Synthesized surfaces for tactile input. Proceedings CHI, 1299–1302.

    Google Scholar 

  • Mynatt, E. D., Back, M., Want, R., Baer, M., & Ellis, J. B. (1998). Designing audio aura. Proceedings of the SIGCHI conference on human factors in computing systems, pp. 566–573.

    Google Scholar 

  • Oki, M., Tsukada, K., & Kurihara, K. & Siio, I. (2008). HomeOrgel: Interactive music box for aural representation. Adjunct Proceedings of Ubicomp2008, pp. 45–46.

    Google Scholar 

  • Rekimoto, J. (2002). SmartSkin: An infrastructure for freehand manipulation on interactive surfaces. Proceedings of the SIGCHI conference on human factors in computing systems, pp. 113–120.

    Google Scholar 

  • Ruyter, B. de, Aarts, E., Markopoulos, P., & Ijsselsteijn, W. (2005). Ambient intelligence research in homelab: Engineering the user experience, Ambient Intelligence (pp. 49–61). Berlin: Springer.

    Google Scholar 

  • Sakakibara, Y., Hayashi, H., & Hirai, S. (2013). Tubtouch: Bathtub touch user-interface toward curved surfaces and unaffected by water. Journal of Information Processing Society of Japan, 54(4), 1538–1550. (In Japanese).

    Google Scholar 

  • Sato, M., Poupyrev, I., & Harrison, C. (2012). Touché: Enhancing touch interaction on humans, screens, liquids, and everyday objects. Proceedings of CHI2012, pp. 483–492.

    Google Scholar 

  • Schafer, R. M. (1993). The soundscape: Our sonic environment and the tuning of the world. Vermont: Destiny Books.

    Google Scholar 

  • Siio, I., Motooka, N., Tsukada, K., & Kanbara, K., Ohta. Y. (2010). Ocha house and ubiquitous computing. Journal of Human Interface, 12(1), 7–12. (In Japanese).

    Google Scholar 

  • Slayden, A., Spasojevic, M., Hans, M., & Smith, M. (2005). The DJammer: “Air-Scratching” and freeing the DJ to join the party. CHI 2005 Extended Abstracts, pp. 1789–1792.

    Google Scholar 

  • Sugihara, Y., & Tachi, S. (2000). Water dome-an augmented environment. Proceedings of international conference on computer visualisation, pp. 548–553.

    Google Scholar 

  • Sugihara, S., & Tachi, S. (2001). Development of head-mounted water display. Journal of The Virtual Reality Society of Japan, 6(2), 145–152. (In Japanese).

    Google Scholar 

  • Tomibayashi, Y., Takegawa, Y., Terada, T., & Tsukamoto, M. (2006). Wearable DJ system: A new motion-controlled DJ system. Proceedings of ACE '09, pp. 132–139.

    Google Scholar 

  • Tran, Q. T., & Mynatt, E. D.. (2000) Music monitor: Ambient musical data for the home. Proceedings of the IFIP WG 9.3 international conference on home oriented informatics and telematics.

    Google Scholar 

  • Ueda, H., & Yamazaki, T. (2007). Ubiquitous home: A study of an intelligent living environment for the daily life support. The Jorunal of Robotics Society of Japan, 25, 10–16. (In Japanese).

    Article  Google Scholar 

  • Weiser, M. (1991). The computer for the 21st century. Scientific American special issue on communications, computers, and networks. http://nano.xerox.com/hypertext/weiser/SciAmDraft3.html.

  • Westerman, W. (1999). Hand tracking, finger identification and chordic manipulation on a multiTouch surface. PhD Thesis, University of Delaware.

    Google Scholar 

  • Yonezawa, T., & Mase, K. (2000). Interaction of musical instrument using fluid media. Journal of The Virtual Reality Society of Japan, 5(1), 755–762.

    Google Scholar 

Download references

Acknowledgement

These research were partially supported by Osaka Gas Co.,Ltd and a grant from the Hayao Nakayama Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Hirai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Hirai, S. (2014). Embedded Smarthouse Bathroom Entertainment Systems for Improving Quality of Life. In: Cheok, A., Nijholt, A., Romão, T. (eds) Entertaining the Whole World. Human–Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-4471-6446-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6446-3_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6445-6

  • Online ISBN: 978-1-4471-6446-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics