Skip to main content

Frontotemporal Lobar Degeneration: Genetics and Clinical Phenotypes

  • Chapter
  • First Online:
Neurodegenerative Diseases

Abstract

Frontotemporal lobar degeneration (FTLD) is the most frequent dementia in the presenile population. It presents with different syndromes, including behavioral variant frontotemporal dementia (bvFTD), primary nonfluent aphasia (PNFA), semantic dementia (SD), and logopenic aphasia. In 2011, new diagnostic criteria bvFTD, which include the use of biomarkers, have been published. According to them, bvFTD can be classified into “possible” (clinical features only), “probable” (inclusion of imaging biomarkers), and “definite” (in the presence of a known causal mutation or at autopsy). Motor neuron degeneration often co-occurs with FTLD. In the last few years, different autosomal dominant mutations have been demonstrated to be the cause of the familial aggregation frequently reported in FTLD. Major causal genes so far discovered include microtubule-associated protein tau (MAPT), progranulin (GRN), and chromosome 9 open reading frame (C9ORF)72. Mutations in MAPT are generally associated with early onset and with the bvFTD phenotype, whereas mutations in GRN and C9ORF72 are associated with high clinical heterogeneity and age at disease onset. In addition, other genes are linked to rare cases of familial FTLD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134:2456–77.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–14.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Piguet O, Hornberger M, Mioshi E, Hodges JR. Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol. 2011;10:162–72.

    Article  PubMed  Google Scholar 

  4. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55:335–46.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Villa C, Ghezzi L, Pietroboni AM, Fenoglio C, Cortini F, Serpente M, et al. A novel MAPT mutation associated with the clinical phenotype of progressive nonfluent aphasia. J Alzheimers Dis. 2011;26:19–26.

    PubMed  CAS  Google Scholar 

  6. Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology. 2002;58:1615–21.

    Article  PubMed  CAS  Google Scholar 

  7. Bird T, Knopman D, VanSwieten J, Rosso S, Feldman H, Tanabe H, et al. Epidemiology and genetics of frontotemporal dementia/Pick’s disease. Ann Neurol. 2003;54:S29–31.

    Article  PubMed  Google Scholar 

  8. Goldman JS, Farmer JS, Wood EM, Johnson JK, Boxer A, Neuhaus J, et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology. 2005;65:1817–9.

    Article  PubMed  CAS  Google Scholar 

  9. Pickering-Brown SM. The complex aetiology of frontotemporal lobar degeneration. Exp Neurol. 2007;114:39–47.

    Google Scholar 

  10. Wilhelmsen KC, Lynch T, Pavlou E, Higgins M, Nygaard TG. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21-22. Am J Hum Genet. 1994;55(6):1159–65.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:702–5.

    Article  PubMed  CAS  Google Scholar 

  12. Rademakers R, Cruts M, van Broeckhoven C. The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat. 2004;24:277–95.

    Article  PubMed  CAS  Google Scholar 

  13. Grisart B, Willatt L, Destrée A, Fryns JP, Rack K, de Ravel T, et al. 17q21.31 microduplication patients are characterised by behavioural problems and poor social interaction. J Med Genet. 2009;46:524–30.

    Article  PubMed  CAS  Google Scholar 

  14. Lladó A, Rodríguez-Santiago B, Antonell A, Sánchez-Valle R, Molinuevo JL, Reñé R, Pérez-Jurado LA. MAPT gene duplications are not a cause of frontotemporal lobar degeneration. Neurosci Lett. 2007;424:61–5.

    Article  PubMed  CAS  Google Scholar 

  15. Rovelet-Lecrux A, Lecourtois M, Thomas-Anterion C, Le Ber I, Brice A, Frebourg T, et al. Partial deletion of the MAPT gene: a novel mechanism of FTDP-17. Hum Mutat. 2009;30:591–602.

    Article  Google Scholar 

  16. Rovelet-Lecrux A, Hannequin D, Guillin O, Legallic S, Jurici S, Wallon D, et al. Frontotemporal dementia phenotype associated with MAPT gene duplication. J Alzheimers Dis. 2010;21:897–902.

    PubMed  CAS  Google Scholar 

  17. Rossi G, Conconi D, Panzeri E, Redaelli S, Piccoli E, Paoletta L, et al. Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome. J Alzheimers. 2013;33:969–82.

    CAS  Google Scholar 

  18. Van Swieten JC, Heutink P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol. 2008;7:965–74.

    Article  PubMed  CAS  Google Scholar 

  19. Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37:806–8.

    Article  PubMed  CAS  Google Scholar 

  20. Urwin H, Ghazi-Noori S, Collinge J, Isaacs A. The role of CHMP2B in frontotemporal dementia. Biochem Soc Trans. 2009;37:208–12.

    Article  PubMed  CAS  Google Scholar 

  21. Lindquist SG, Braedgaard H, Svenstrup K, Isaacs AM, Nielsen JE, FReJA Consortium. Frontotemporal dementia linked to chromosome 3 (FTD-3)-current concepts and the detection of a previously unknown branch of the Danish FTD-3 family. Eur J Neurol. 2008;15:667–70.

    Article  PubMed  CAS  Google Scholar 

  22. Urwin H, Authier A, Nielsen JE, Metcalf D, Powell C, Froud K, et al. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum Mol Genet. 2010;19:2228–38.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Isaacs AM, Johannsen P, Holm I, Nielsen JE, FReJA Consortium. Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res. 2011;8:246–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Ghazi-Noori S, Froud KE, Mizielinska S, Powell C, Smidak M, Fernandez de Marco M, et al. Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain. 2012;135:819–32.

    Google Scholar 

  25. Nielsen TT, Mizielinska S, Hasholt L, Isaacs AM, Nielsen JE, FReJA Consortium. Reversal of pathology in CHMP2B-mediated frontotemporal dementia patient cells using RNA interference. J Gene Med. 2012;14:521–9.

    Article  PubMed  CAS  Google Scholar 

  26. Parkinson N, Ince PG, Smith MO, Highley R, Skibinski G, Andersen PM, et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology. 2006;67:1074–7.

    Article  PubMed  CAS  Google Scholar 

  27. Stokholm J, Teasdale TW, Johannsen P, Nielsen JE, Nielsen TT, Isaacs A, et al. Cognitive impairment in the preclinical stage of dementia in FTD-3 CHMP2B mutation carriers: a longitudinal prospective study. J Neurol Neurosurg Psychiatry. 2013;84:170–6.

    Article  PubMed  Google Scholar 

  28. Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscul Disord. 2009;19:308–15.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Forman MS, Mackenzie IR, Cairns NJ, Swanson E, Boyer PJ, Drachman DA, et al. Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J Neuropathol Exp Neurol. 2006;65:571–81.

    Article  PubMed  CAS  Google Scholar 

  30. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin containing protein. Nat Genet. 2004;36:377–81.

    Article  PubMed  CAS  Google Scholar 

  31. Kimonis VE, Fulchiero E, Vesa J, Watts G. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta. 2008;1782:744–8.

    Article  PubMed  CAS  Google Scholar 

  32. Komatsu J, Iwasa K, Yanase D, Yamada M. Inclusion body myopathy with Paget disease of the bone and frontotemporal dementia associated with a novel G156S mutation in the VCP gene. Muscle Nerve. 2013;48(6):995–6.

    Google Scholar 

  33. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442:916–9.

    Article  PubMed  CAS  Google Scholar 

  34. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442:920–4.

    Article  PubMed  CAS  Google Scholar 

  35. He Z, Bateman A. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med. 2003;81:600–12.

    Article  PubMed  CAS  Google Scholar 

  36. Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122(1):111–3.

    Article  Google Scholar 

  37. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122(1):111–3.

    Google Scholar 

  38. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.

    Article  PubMed  CAS  Google Scholar 

  39. Yu CE, Bird TD, Bekris LM, Montine TJ, Leverenz JB, Steinbart E, et al. The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol. 2010;67:161–70.

    PubMed Central  PubMed  Google Scholar 

  40. Carecchio M, Fenoglio C, De Riz M, Guidi I, Comi C, Cortini F, et al. Progranulin plasma levels as potential biomarker for the identification of GRN deletion carriers. A case with atypical onset as clinical amnestic Mild Cognitive Impairment converted to Alzheimer’s disease. J Neurol Sci. 2009;287:291–3.

    Article  PubMed  CAS  Google Scholar 

  41. Carecchio M, Fenoglio C, Cortini F, Comi C, Benussi L, Ghidoni R, et al. Cerebrospinal fluid biomarkers in Progranulin mutations carriers. J Alzheimers Dis. 2011;27(4):781–90.

    PubMed  CAS  Google Scholar 

  42. Pietroboni AM, Fumagalli GG, Ghezzi L, Fenoglio C, Cortini F, Serpente M, et al. Phenotypic heterogeneity of the GRN Asp22fs mutation in a large Italian kindred. J Alzheimers Dis. 2011;24:253–9.

    PubMed  Google Scholar 

  43. Arosio B, Abbate C, Galimberti D, Rossi PD, Inglese S, Fenoglio C, et al. GRN Thr272fs clinical heterogeneity: a case with atypical late onset presenting with a dementia with Lewy bodies phenotype. J Alzheimers Dis. 2013;35:669–74.

    PubMed  Google Scholar 

  44. Rainero I, Rubino E, Negro E, Gallone S, Galimberti D, Gentile S, et al. Heterosexual pedophilia in a frontotemporal dementia patient with a mutation in the progranulin gene. Biol Psychiatry. 2011;70:43–4.

    Article  Google Scholar 

  45. Cerami C, Marcone A, Galimberti D, Villa C, Scarpini E, Cappa SF. From genotype to phenotype: two cases of genetic frontotemporal lobar degeneration with premorbid bipolar disorder. J Alzheimers Dis. 2011;27(4):791–7.

    PubMed  CAS  Google Scholar 

  46. Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011;178(1):284–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science. 2011;332(6028):478–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2010;207(1):117–28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Filiano AJ, Martens LH, Young AH, Warmus BA, Zhou P, Diaz-Ramirez G, et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J Neurosci. 2013;33(12):5352–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A, et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA. 2000;284:1664–9.

    Article  PubMed  CAS  Google Scholar 

  51. Morita M, Al-Chalabi A, Andersen PM, Hosler B, Sapp P, Englund E, et al. A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology. 2006;66:839–44.

    Article  PubMed  CAS  Google Scholar 

  52. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Galimberti D, Scarpini E. Clinical phenotypes and genetic biomarkers of FTLD. J Neural Transm. 2012;119(7):851–60.

    Article  PubMed  CAS  Google Scholar 

  55. Snowden JS, Rollinson S, Thompson JC, Harris JM, Stopford CL, Richardson AM, et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain. 2012;135(Pt 3):693–708.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Floris G, Borghero G, Cannas A, Di Stefano F, Costantino E, Murru MR, et al. Frontotemporal dementia with psychosis, parkinsonism, visuo-spatial dysfunction, upper motor neuron involvement associated to expansion of C9ORF72: a peculiar phenotype? J Neurol. 2012;259(8):1749–51.

    Article  PubMed  Google Scholar 

  57. Calvo A, Moglia C, Canosa A, Cistaro A, Valentini C, Carrara G, et al. Amyotrophic lateral sclerosis/frontotemporal dementia with predominant manifestations of obsessive-compulsive disorder associated to GGGGCC expansion of the c9orf72 gene. J Neurol. 2012;259(12):2723–5.

    PubMed  Google Scholar 

  58. Arighi A, Fumagalli GG, Jacini F, Fenoglio C, Ghezzi L, Pietroboni AM, et al. Early onset behavioural variant frontotemporal dementia due to the C9ORF72 hexanucleotide repeat expansion: psychiatric clinical presentations. J Alzheimers Dis. 2012;31:447–52.

    PubMed  Google Scholar 

  59. Mahoney CJ, Beck J, Rohrer JD, Lashley T, Mok K, Shakespeare T, et al. Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain. 2012;135(Pt 3):736–50.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Murray ME, DeJesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR, et al. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol. 2011;122:673–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Galimberti D, Fenoglio C, Serpente M, Villa C, Bonsi R, Arighi A, et al. Autosomal dominant frontotemporal lobar degeneration due to the C9ORF72 hexanucleotide repeat expansion: late-onset psychotic clinical presentation. Biol Psychiatry. 2013;74:384–91.

    Article  PubMed  CAS  Google Scholar 

  62. Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics. 2013;29(4):499–503.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Renoux AJ, Todd PK. Neurodegeneration the RNA way. Prog Neurobiol. 2012;97:173–89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Reddy K, Zamiri B, Stanley SY, Macgregor RB, Pearson CE. The disease-associated r(GGGGCC)n repeat from the C9orf72 gene forms tract length-dependent uni- and multimolecular RNA G-quadruplex structures. J Biol Chem. 2013;288:9860–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339(6125):1335–8.

    Article  PubMed  CAS  Google Scholar 

  66. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A. 2011;108:260–5.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013;77:639–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S, et al. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol. 2013;126:385–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR, et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology. 2011;76:467–74.

    Article  CAS  Google Scholar 

  70. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M, et al. http://www.ncbi.nlm.nih.gov/pubmed/21178100. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology. 2011;76(5):467–74.

    Google Scholar 

  71. Cruchaga C, Graff C, Chiang HH, Wang J, Hinrichs AL, Spiegel N, et al. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol. 2011;68:581–6.

    PubMed Central  PubMed  Google Scholar 

  72. Jin SC, Pastor P, Cooper B, Cervantes S, Benitez BA, Razquin C, et al. Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early-onset and familial Alzheimer’s disease Ibero-American cohort. Alzheimers Res Ther. 2012;4(4):34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Lord J, Turton J, Medway C, Shi H, Brown K, Lowe J, et al. Next generation sequencing of CLU, PICALM and CR1: pitfalls and potential solutions. Int J Mol Epidemiol Genet. 2012;3:262–75.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Guerreiro RJ, Lohmann E, Brás JM, Gibbs JR, Rohrer JD, Gurunlian N, et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 2013;70:78–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Serpente PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Serpente, M., Galimberti, D. (2014). Frontotemporal Lobar Degeneration: Genetics and Clinical Phenotypes. In: Galimberti, D., Scarpini, E. (eds) Neurodegenerative Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-6380-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6380-0_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6379-4

  • Online ISBN: 978-1-4471-6380-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics