Skip to main content

Autosomal Dominant Alzheimer’s Disease: Underlying Causes

  • Chapter
  • First Online:
Neurodegenerative Diseases

Abstract

Knowledge about genetics of Alzheimer’s disease (AD), the most prevalent form of dementia, is important to manage challenges of aging populations. So far, genetic analyses of families with autosomal dominant AD, presenting with early-onset dementia (<65 years of age), have found three causal genes: APP, PSEN1, and PSEN2. The possibility to detect carriers of causal mutations could help to evaluate the efficacy of different treatments at either asymptomatic or early stages of dementia. Such individuals are currently enrolled in a longitudinal clinical trial, named the Dominantly Inherited Alzheimer Network (DIAN). We provide an overview for the molecular genetic findings available for causal AD genes, discuss how this knowledge can be applied in clinical practice, and highlight the strategies to detect novel AD genes (e.g., TREM2 and PLD3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dementia statistics. Available at: http://www.alz.co.uk/research/statistics. Accessed 3 Jan 2014.

  2. Miyoshi K. What is ‘early onset dementia’? Psychogeriatrics. 2009;9(2):67–72 [Review].

    PubMed  Google Scholar 

  3. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 2012;488(7409):96–9.

    PubMed  CAS  Google Scholar 

  4. Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci. 2003;26:81–104 [Review].

    PubMed  CAS  Google Scholar 

  5. Stefanacci RG. The costs of Alzheimer’s disease and the value of effective therapies. Am J Manag Care. 2011;17 Suppl 13:S356–62 [Review].

    PubMed  Google Scholar 

  6. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5 [Review].

    PubMed  CAS  Google Scholar 

  7. St George-Hyslop PH, Petit A. Molecular biology and genetics of Alzheimer’s disease. C R Biol. 2005;328(2):119–30 [Review].

    Google Scholar 

  8. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349(6311):704–6.

    PubMed  CAS  Google Scholar 

  9. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375(6534):754–60.

    PubMed  CAS  Google Scholar 

  10. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269(5226):973–7.

    PubMed  CAS  Google Scholar 

  11. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376(6543):775–8.

    PubMed  CAS  Google Scholar 

  12. Guyant-Marechal L, Campion D, Hannequin D. Alzheimer disease: autosomal dominant forms. Rev Neurol (Paris). 2009;165(3):223–31.

    CAS  Google Scholar 

  13. Raber J, Huang Y, Ashford JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging. 2004;25(5):641–50.

    PubMed  CAS  Google Scholar 

  14. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.

    PubMed  CAS  Google Scholar 

  16. Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F, et al. Replication of CLU, CR1, and PICALM associations with Alzheimer disease. Arch Neurol. 2010;67(8):961–4.

    PubMed Central  PubMed  Google Scholar 

  17. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset alzheimer’s disease. Nat Genet. 2011;43(5):436–41.

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35.

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet. 2007;39(2):168–77.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, et al. Extended meta-analysis of 74,538 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.

    CAS  Google Scholar 

  21. Bignante EA, Heredia F, Morfini G, Lorenzo A. Amyloid beta precursor protein as a molecular target for amyloid beta-induced neuronal degeneration in Alzheimer’s disease. Neurobiol Aging. 2013;34:2525–37.

    PubMed  CAS  Google Scholar 

  22. Postina R. Activation of alpha-secretase cleavage. J Neurochem. 2012;120 Suppl 1:46–54 [Review].

    PubMed  CAS  Google Scholar 

  23. Allinson TM, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res. 2003;74(3):342–52.

    PubMed  CAS  Google Scholar 

  24. Nicolaou M, Song YQ, Sato CA, Orlacchio A, Kawarai T, Medeiros H, et al. Mutations in the open reading frame of the beta-site APP cleaving enzyme (BACE) locus are not a common cause of Alzheimer’s disease. Neurogenetics. 2001;3(4):203–6.

    PubMed  CAS  Google Scholar 

  25. Cruts M, Dermaut B, Rademakers R, Roks G, Van den Broeck M, Munteanu G, et al. Amyloid beta secretase gene (BACE) is neither mutated in nor associated with early-onset alzheimer’s disease. Neurosci Lett. 2001;313(1–2):105–7.

    Google Scholar 

  26. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature. 1992;360(6405):672–4.

    PubMed  CAS  Google Scholar 

  27. Wolfe MS. The gamma-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry. 2006;45(26):7931–9 [Review].

    PubMed  CAS  Google Scholar 

  28. Selkoe DJ, Wolfe MS. Presenilin: running with scissors in the membrane. Cell. 2007;131(2):215–21 [Review].

    PubMed  CAS  Google Scholar 

  29. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, et al. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell. 1999;97(3):395–406.

    PubMed  CAS  Google Scholar 

  30. Lu DC, Rabizadeh S, Chandra S, Shayya RF, Ellerby LM, Ye X, et al. A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nat Med. 2000;6(4):397–404.

    PubMed  CAS  Google Scholar 

  31. Sisodia SS, St George-Hyslop PH. gamma-Secretase, Notch, Abeta and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci. 2002;3(4):281–90.

    PubMed  CAS  Google Scholar 

  32. Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33(9):1340–4.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, et al. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science. 1990;248(4959):1124–6.

    PubMed  CAS  Google Scholar 

  34. Van Broeckhoven C, Haan J, Bakker E, Hardy JA, Van Hul W, Wehnert A, et al. Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science. 1990;248(4959):1120–2.

    PubMed  Google Scholar 

  35. Fernandez-Madrid I, Levy E, Marder K, Frangione B. Codon 618 variant of Alzheimer amyloid gene associated with inherited cerebral hemorrhage. Ann Neurol. 1991;30(5):730–3.

    PubMed  CAS  Google Scholar 

  36. Bornebroek M, Haan J, Maat-Schieman ML, Van Duinen SG, Roos RA. Hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D): I–A review of clinical, radiologic and genetic aspects. Brain Pathol. 1996;6(2):111–4 [Review].

    PubMed  CAS  Google Scholar 

  37. Bugiani O, Giaccone G, Rossi G, Mangieri M, Capobianco R, Morbin M, et al. Hereditary cerebral hemorrhage with amyloidosis associated with the E693K mutation of APP. Arch Neurol. 2010;67(8):987–95.

    PubMed  Google Scholar 

  38. Kamino K, Orr HT, Payami H, Wijsman EM, Alonso ME, Pulst SM, et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet. 1992;51(5):998–1014.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat Neurosci. 2001;4(9):887–93.

    PubMed  CAS  Google Scholar 

  40. Tomiyama T, Nagata T, Shimada H, Teraoka R, Fukushima A, Kanemitsu H, et al. A new amyloid beta variant favoring oligomerization in Alzheimer’s-type dementia. Ann Neurol. 2008;63(3):377–87.

    PubMed  CAS  Google Scholar 

  41. Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol. 2001;49(6):697–705.

    PubMed  CAS  Google Scholar 

  42. Greenberg SM, Shin Y, Grabowski TJ, Cooper GE, Rebeck GW, Iglesias S, et al. Hemorrhagic stroke associated with the Iowa amyloid precursor protein mutation. Neurology. 2003;60(6):1020–2.

    PubMed  CAS  Google Scholar 

  43. Hendriks L, van Duijn CM, Cras P, Cruts M, Van Hul W, van Harskamp F, et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet. 1992;1(3):218–21.

    PubMed  CAS  Google Scholar 

  44. Roks G, Van Harskamp F, De Koning I, Cruts M, De Jonghe C, Kumar-Singh S, et al. Presentation of amyloidosis in carriers of the codon 692 mutation in the amyloid precursor protein gene (APP692). Brain. 2000;123(Pt 10):2130–40.

    PubMed  Google Scholar 

  45. Kumar-Singh S, Cras P, Wang R, Kros JM, van Swieten J, Lubke U, et al. Dense-core senile plaques in the Flemish variant of Alzheimer’s disease are vasocentric. Am J Pathol. 2002;161(2):507–20.

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, et al. APP locus duplication causes autosomal dominant early-onset alzheimer disease with cerebral amyloid angiopathy. Nat Genet. 2006;38(1):24–6.

    Google Scholar 

  47. Guyant-Marechal I, Berger E, Laquerriere A, Rovelet-Lecrux A, Viennet G, Frebourg T, et al. Intrafamilial diversity of phenotype associated with app duplication. Neurology. 2008;71(23):1925–6.

    PubMed  CAS  Google Scholar 

  48. Domingues-Montanari S, Pares M, Hernandez-Guillamon M, Fernandez-Cadenas I, Mendioroz M, Ortega G, et al. No evidence of APP point mutation and locus duplication in individuals with cerebral amyloid angiopathy. Eur J Neurol. 2011;18(10):1279–81.

    PubMed  CAS  Google Scholar 

  49. Haass C, Hung AY, Selkoe DJ, Teplow DB. Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem. 1994;269(26):17741–8.

    PubMed  CAS  Google Scholar 

  50. Kumar-Singh S, De Jonghe C, Cruts M, Kleinert R, Wang R, Mercken M, et al. Nonfibrillar diffuse amyloid deposition due to a gamma(42)-secretase site mutation points to an essential role for N-truncated A beta(42) in Alzheimer’s disease. Hum Mol Genet. 2000;9(18):2589–98.

    PubMed  CAS  Google Scholar 

  51. De Jonghe C, Esselens C, Kumar-Singh S, Craessaerts K, Serneels S, Checler F, et al. Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Hum Mol Genet. 2001;10(16):1665–71.

    PubMed  Google Scholar 

  52. Cruts M, Dermaut B, Rademakers R, Van den Broeck M, Stogbauer F, Van Broeckhoven C. Novel APP mutation V715A associated with presenile Alzheimer’s disease in a German family. J Neurol. 2003;250(11):1374–5.

    PubMed  Google Scholar 

  53. Eckman CB, Mehta ND, Crook R, Perez-tur J, Prihar G, Pfeiffer E, et al. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet. 1997;6(12):2087–9.

    PubMed  CAS  Google Scholar 

  54. Herl L, Thomas AV, Lill CM, Banks M, Deng A, Jones PB, et al. Mutations in amyloid precursor protein affect its interactions with presenilin/gamma-secretase. Mol Cell Neurosci. 2009;41(2):166–74.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Citron M, Vigo-Pelfrey C, Teplow DB, Miller C, Schenk D, Johnston J, et al. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc Natl Acad Sci U S A. 1994;91(25):11993–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Perez RG, Squazzo SL, Koo EH. Enhanced release of amyloid beta-protein from codon 670/671 “Swedish” mutant beta-amyloid precursor protein occurs in both secretory and endocytic pathways. J Biol Chem. 1996;271(15):9100–7.

    PubMed  CAS  Google Scholar 

  57. Kirkitadze MD, Condron MM, Teplow DB. Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol. 2001;312(5):1103–19.

    PubMed  CAS  Google Scholar 

  58. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet. 1992;1(5):345–7.

    PubMed  CAS  Google Scholar 

  59. Di Fede G, Catania M, Morbin M, Rossi G, Suardi S, Mazzoleni G, et al. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science. 2009;323(5920):1473–7.

    PubMed Central  PubMed  Google Scholar 

  60. Ghani M, Sato C, Lee J, Reitz C, Moreno D, Mayeux R, et al. Evidence of recessive Alzheimer’s disease loci in Caribbean Hispanics: genome-wide survey of runs of homozygosity. JAMA Neurol. 2013;70(10):1261–7. doi:10.1001/jamaneurol.2013.3545.

    PubMed Central  PubMed  Google Scholar 

  61. McNaughton D, Knight W, Guerreiro R, Ryan N, Lowe J, Poulter M, et al. Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series. Neurobiol Aging. 2012;33(2):426.e13–21.

    CAS  Google Scholar 

  62. Brouwers N, Sleegers K, Engelborghs S, Bogaerts V, Serneels S, Kamali K, et al. Genetic risk and transcriptional variability of amyloid precursor protein in Alzheimer’s disease. Brain. 2006;129(Pt 11):2984–91.

    PubMed  Google Scholar 

  63. Ghani M, Pinto D, Lee JH, Grinberg Y, Sato C, Moreno D, et al. Genome-wide survey of large rare copy number variants in Alzheimer’s disease among Caribbean hispanics. G3 (Bethesda). 2012;2(1):71–8.

    CAS  Google Scholar 

  64. Hazrati LN, Van Cauwenberghe C, Brooks PL, Brouwers N, Ghani M, Sato C, et al. Genetic association of CR1 with Alzheimer’s disease: a tentative disease mechanism. Neurobiol Aging. 2012;33(12):2949.e5–12.

    CAS  Google Scholar 

  65. Hooli BV, Kovacs-Vajna ZM, Mullin K, Blumenthal MA, Mattheisen M, Zhang C, et al. Rare autosomal copy number variations in early-onset familial Alzheimer’s disease. Mol Psychiatry. 2013. doi:10.1038/mp.2013.77. [Epub ahead of print].

  66. St George-Hyslop P, McLachlan DC, Tsuda T, Rogaev E, Karlinsky H, Lippa CF, et al. Alzheimer’s disease and possible gene interaction. Science. 1994;263(5146):537.

    Google Scholar 

  67. Wilhelmus MM, Otte-Holler I, Davis J, Van Nostrand WE, de Waal RM, Verbeek MM. Apolipoprotein E genotype regulates amyloid-beta cytotoxicity. J Neurosci. 2005;25(14):3621–7.

    PubMed  CAS  Google Scholar 

  68. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, et al. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science. 1992;258(5082):668–71.

    PubMed  CAS  Google Scholar 

  69. St George-Hyslop P, Haines J, Rogaev E, Mortilla M, Vaula G, Pericak-Vance M, et al. Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat Genet. 1992;2(4):330–4.

    Google Scholar 

  70. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics. 2008;2008:420747. doi:10.1155/2008/420747. Epub 2008 Jul 8.

    PubMed Central  PubMed  Google Scholar 

  71. Haass C, De Strooper B. The presenilins in Alzheimer’s disease—proteolysis holds the key. Science. 1999;286(5441):916–9.

    PubMed  CAS  Google Scholar 

  72. Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing. Nature. 2000;407(6800):48–54.

    PubMed  CAS  Google Scholar 

  73. St George-Hyslop P, Fraser PE. Assembly of the presenilin gamma-/epsilon-secretase complex. J Neurochem. 2012;120 Suppl 1:84–8 [Review].

    CAS  Google Scholar 

  74. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, et al. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron. 1996;17(5):1005–13.

    PubMed  CAS  Google Scholar 

  75. Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC, et al. The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nat Med. 1996;2(10):1146–50.

    PubMed  CAS  Google Scholar 

  76. Mann DM, Iwatsubo T, Cairns NJ, Lantos PL, Nochlin D, Sumi SM, et al. Amyloid beta protein (Abeta) deposition in chromosome 14-linked Alzheimer’s disease: predominance of Abeta42(43). Ann Neurol. 1996;40(2):149–56.

    PubMed  CAS  Google Scholar 

  77. Mann DM, Iwatsubo T, Nochlin D, Sumi SM, Levy-Lahad E, Bird TD. Amyloid (Abeta) deposition in chromosome 1-linked Alzheimer’s disease: the Volga German families. Ann Neurol. 1997;41(1):52–7.

    PubMed  CAS  Google Scholar 

  78. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature. 1999;398(6727):513–7.

    PubMed  CAS  Google Scholar 

  79. Fluhrer R, Fukumori A, Martin L, Grammer G, Haug-Kroper M, Klier B, et al. Intramembrane proteolysis of GXGD-type aspartyl proteases is slowed by a familial Alzheimer disease-like mutation. J Biol Chem. 2008;283(44):30121–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Crook R, Verkkoniemi A, Perez-Tur J, Mehta N, Baker M, Houlden H, et al. A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med. 1998;4(4):452–5.

    PubMed  CAS  Google Scholar 

  81. Rogaeva EA, Fafel KC, Song YQ, Medeiros H, Sato C, Liang Y, et al. Screening for PS1 mutations in a referral-based series of AD cases: 21 novel mutations. Neurology. 2001;57(4):621–5.

    PubMed  CAS  Google Scholar 

  82. De Jonghe C, Cruts M, Rogaeva EA, Tysoe C, Singleton A, Vanderstichele H, et al. Aberrant splicing in the presenilin-1 intron 4 mutation causes presenile Alzheimer’s disease by increased Abeta42 secretion. Hum Mol Genet. 1999;8(8):1529–40.

    PubMed  Google Scholar 

  83. Muller U, Winter P, Graeber MB. A presenilin 1 mutation in the first case of Alzheimer’s disease. Lancet Neurol. 2013;12(2):129–30.

    PubMed  Google Scholar 

  84. Benitez BA, Karch CM, Cai Y, Jin SC, Cooper B, Carrell D, et al. The PSEN1, p.E318G Variant Increases the Risk of Alzheimer’s Disease in APOE-epsilon4 Carriers. PLoS Genet. 2013;9(8):e1003685.

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Snider BJ, Norton J, Coats MA, Chakraverty S, Hou CE, Jervis R, et al. Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Arch Neurol. 2005;62(12):1821–30.

    PubMed  Google Scholar 

  86. Yescas P, Huertas-Vazquez A, Villarreal-Molina MT, Rasmussen A, Tusie-Luna MT, Lopez M, et al. Founder effect for the Ala431Glu mutation of the presenilin 1 gene causing early-onset alzheimer’s disease in Mexican families. Neurogenetics. 2006;7(3):195–200.

    Google Scholar 

  87. Murrell J, Ghetti B, Cochran E, Macias-Islas MA, Medina L, Varpetian A, et al. The A431E mutation in PSEN1 causing familial Alzheimer’s disease originating in Jalisco State, Mexico: an additional fifteen families. Neurogenetics. 2006;7(4):277–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Athan ES, Williamson J, Ciappa A, Santana V, Romas SN, Lee JH, et al. A founder mutation in presenilin 1 causing early-onset alzheimer disease in unrelated Caribbean Hispanic families. JAMA. 2001;286(18):2257–63.

    Google Scholar 

  89. Tang MX, Cross P, Andrews H, Jacobs DM, Small S, Bell K, et al. Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. Neurology. 2001;56(1):49–56.

    PubMed  CAS  Google Scholar 

  90. Rogaeva E. The solved and unsolved mysteries of the genetics of early-onset alzheimer’s disease. Neuromolecular Med. 2002;2(1):1–10 [Review].

    Google Scholar 

  91. Le TV, Crook R, Hardy J, Dickson DW. Cotton wool plaques in non-familial late-onset alzheimer disease. J Neuropathol Exp Neurol. 2001;60(11):1051–61.

    Google Scholar 

  92. Yokota O, Terada S, Ishizu H, Ujike H, Ishihara T, Namba M, et al. Variability and heterogeneity in Alzheimer’s disease with cotton wool plaques: a clinicopathological study of four autopsy cases. Acta Neuropathol. 2003;106(4):348–56.

    PubMed  Google Scholar 

  93. Hiltunen M, Helisalmi S, Mannermaa A, Alafuzoff I, Koivisto AM, Lehtovirta M, et al. Identification of a novel 4.6-kb genomic deletion in presenilin-1 gene which results in exclusion of exon 9 in a Finnish early onset alzheimer’s disease family: an Alu core sequence-stimulated recombination? Eur J Hum Genet. 2000;8(4):259–66.

    Google Scholar 

  94. Smith MJ, Kwok JB, McLean CA, Kril JJ, Broe GA, Nicholson GA, et al. Variable phenotype of Alzheimer’s disease with spastic paraparesis. Ann Neurol. 2001;49(1):125–9.

    PubMed  CAS  Google Scholar 

  95. Sinha N, Grimes D, Tokuhiro S, Sato C, Rogaeva E, Woulfe J. Variant Alzheimer’s disease with spastic paraparesis and supranuclear gaze palsy. Can J Neurol Sci. 2013;40(2):249–51.

    PubMed  Google Scholar 

  96. Dermaut B, Kumar-Singh S, Engelborghs S, Theuns J, Rademakers R, Saerens J, et al. A novel presenilin 1 mutation associated with Pick’s disease but not beta-amyloid plaques. Ann Neurol. 2004;55(5):617–26 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  97. Sitek EJ, Narozanska E, Peplonska B, Filipek S, Barczak A, Styczynska M, et al. A patient with posterior cortical atrophy possesses a novel mutation in the presenilin 1 gene. PLoS One. 2013;8(4):e61074.

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Mahoney CJ, Downey LE, Beck J, Liang Y, Mead S, Perry RJ, et al. The Presenilin 1 P264L Mutation Presenting as non-Fluent/Agrammatic Primary Progressive Aphasia. J Alzheimers Dis. 2013;36:239–43.

    PubMed  CAS  Google Scholar 

  99. Braga-Neto P, Pedroso JL, Alessi H, de Souza PV, Bertolucci PH, Barsottini OG. Early-onset familial Alzheimer’s disease related to presenilin 1 mutation resembling autosomal dominant spinocerebellar ataxia. J Neurol. 2013;260(4):1177–9.

    PubMed  Google Scholar 

  100. Li D, Parks SB, Kushner JD, Nauman D, Burgess D, Ludwigsen S, et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am J Hum Genet. 2006;79(6):1030–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Bernardi L, Tomaino C, Anfossi M, Gallo M, Geracitano S, Costanzo A, et al. Novel PSEN1 and PGRN mutations in early-onset familial frontotemporal dementia. Neurobiol Aging. 2009;30(11):1825–33.

    PubMed  CAS  Google Scholar 

  102. Amtul Z, Lewis PA, Piper S, Crook R, Baker M, Findlay K, et al. A presenilin 1 mutation associated with familial frontotemporal dementia inhibits gamma-secretase cleavage of APP and notch. Neurobiol Dis. 2002;9(2):269–73.

    PubMed  CAS  Google Scholar 

  103. Pickering-Brown SM, Baker M, Gass J, Boeve BF, Loy CT, Brooks WS, et al. Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain. 2006;129(Pt 11):3124–6.

    PubMed  Google Scholar 

  104. Wang B, Yang W, Wen W, Sun J, Su B, Liu B, et al. Gamma-secretase gene mutations in familial acne inversa. Science. 2010;330(6007):1065.

    PubMed  CAS  Google Scholar 

  105. Kimberly WT, Xia W, Rahmati T, Wolfe MS, Selkoe DJ. The transmembrane aspartates in presenilin 1 and 2 are obligatory for gamma-secretase activity and amyloid beta-protein generation. J Biol Chem. 2000;275(5):3173–8.

    PubMed  CAS  Google Scholar 

  106. Jayadev S, Case A, Eastman AJ, Nguyen H, Pollak J, Wiley JC, et al. Presenilin 2 is the predominant gamma-secretase in microglia and modulates cytokine release. PLoS One. 2010;5(12):e15743.

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Li J, Xu M, Zhou H, Ma J, Potter H. Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation. Cell. 1997;90(5):917–27.

    PubMed  CAS  Google Scholar 

  108. Bird TD, Levy-Lahad E, Poorkaj P, Sharma V, Nemens E, Lahad A, et al. Wide range in age of onset for chromosome 1–related familial Alzheimer’s disease. Ann Neurol. 1996;40(6):932–6.

    PubMed  CAS  Google Scholar 

  109. Lao JI, Beyer K, Fernandez-Novoa L, Cacabelos R. A novel mutation in the predicted TM2 domain of the presenilin 2 gene in a Spanish patient with late-onset alzheimer’s disease. Neurogenetics. 1998;1(4):293–6.

    Google Scholar 

  110. Ezquerra M, Lleo A, Castellvi M, Queralt R, Santacruz P, Pastor P, et al. A novel mutation in the PSEN2 gene (T430M) associated with variable expression in a family with early-onset alzheimer disease. Arch Neurol. 2003;60(8):1149–51.

    Google Scholar 

  111. Marchani EE, Bird TD, Steinbart EJ, Rosenthal E, Yu CE, Schellenberg GD, et al. Evidence for three loci modifying age-at-onset of Alzheimer’s disease in early-onset PSEN2 families. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(5):1031–41.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Piscopo P, Marcon G, Piras MR, Crestini A, Campeggi LM, Deiana E, et al. A novel PSEN2 mutation associated with a peculiar phenotype. Neurology. 2008;70(17):1549–54.

    PubMed  CAS  Google Scholar 

  113. Lippa CF, Fujiwara H, Mann DM, Giasson B, Baba M, Schmidt ML, et al. Lewy bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol. 1998;153(5):1365–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron. 2010;68(2):270–81.

    PubMed  CAS  Google Scholar 

  115. Kuwano R, Hara N. Personal genomics for Alzheimer’s disease. Brain Nerve. 2013;65(3):235–46.

    PubMed  CAS  Google Scholar 

  116. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106(45):19096–101.

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, et al. The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res. 2009;19(7):1316–23.

    PubMed Central  PubMed  CAS  Google Scholar 

  119. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27.

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Pottier C, Hannequin D, Coutant S, Rovelet-Lecrux A, Wallon D, Rousseau S, et al. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset alzheimer disease. Mol Psychiatry. 2012;17(9):87–9.

    Google Scholar 

  121. Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature. 2014;505(7484):550–4.

    Google Scholar 

  122. MacArthur DG, Tyler-Smith C. Loss-of-function variants in the genomes of healthy humans. Hum Mol Genet. 2011;19(R2):R125–30.

    Google Scholar 

Download references

Acknowledgments

We are grateful for the support from the Canadian Institutes of Health Research, W. Garfield Weston Foundation, Ontario Research Fund, and Alzheimer Society of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Rogaeva PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ghani, M., Rogaeva, E. (2014). Autosomal Dominant Alzheimer’s Disease: Underlying Causes. In: Galimberti, D., Scarpini, E. (eds) Neurodegenerative Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-6380-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6380-0_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6379-4

  • Online ISBN: 978-1-4471-6380-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics