Skip to main content

Role of Ectonucleotidases and Purinergic Receptors in Calcific Aortic Valve Disease

  • Chapter
  • First Online:
Molecular Biology of Valvular Heart Disease

Abstract

Calcific aortic valve disease (CAVD) is the most common heart valve disorders [1]. Despite intensive research effort in the last decade or so no medical therapy has emerged to treat patients with CAVD [2]. Studies have underlined that CAVD is characterized by lipid infiltration, inflammation, calcification and extensive tissue remodelling, which leads over the years to a clinically significant stenosis [3]. It should be stressed that mineralization and fibrosis are two major contributors to the development and progression of CAVD. Ectopic valve mineralization involves two mechanisms. First, it is well documented by using in vitro system of cell culture that valve interstitial cells (VICs), the main cellular component of the aortic valve, undergo an osteoblastic transition when exposed to a calcifying medium containing phosphate [4]. During this phenotypic switch VICs express several genes, which are involved in osteoblast development such as Runx2, osteopontin, osteocalcin and bone morphogenetic proteins (BMPs) [5]. It is of interest to note that these osteogenic markers are present in specimen of CAVD retrieved from patients undergoing aortic valve replacements procedures [6]. Second, there is evidence that production of phosphate (Pi), which is of prime importance in controlling mineralization of VICs, promotes apoptosis-mediated mineralization [7]. To this effect, in vitro inhibition of apoptosis prevents phosphate-induced mineralization of VICs [8]. Also, in stenotic aortic valves a high level of apoptotic cells is present in the vicinity of calcific nodules. It should be pointed out that osteoblastic transition and apoptosis-mediated mineralization are not mutually exclusive and probably occur simultaneously in different proportions to promote the calcification of the aortic valve. In this regard, studies have highlighted that the stiffness of the substrate on which VICs are grown may determine whether cells will undergo either osteoblastic transition or apoptosis. On this score, a stiffer support largely drives apoptosis of VICs whereas a more compliant matrix will promote mineralization through the expression of bone-related factors [9]. Hence, it could be speculated that during the initial stages of aortic valve mineralization, when the tissues are still relatively compliant, that osteogenic transformation of VICs is dominant, whereas when the process is more advanced apoptosis-mediated mineralization would possibly be major contributor to ectopic valve mineralization.

Disclosures

P. Mathieu has patent applications for the use of ectonucleotidase inhibitors and purinergic agonists in the treatment of CAVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajamannan NM, Evans FJ, Aikawa E, et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation. 2011;124(16):1783–91.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Teo KK, Corsi DJ, Tam JW, Dumesnil JG, Chan KL. Lipid lowering on progression of mild to moderate aortic stenosis: meta-analysis of the randomized placebo-controlled clinical trials on 2344 patients. Can J Cardiol. 2011;27(6):800–8.

    Article  PubMed  CAS  Google Scholar 

  3. Freeman RV, Otto CM. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation. 2005;111(24):3316–26.

    Article  PubMed  Google Scholar 

  4. Rattazzi M, Iop L, Faggin E, et al. Clones of interstitial cells from bovine aortic valve exhibit different calcifying potential when exposed to endotoxin and phosphate. Arterioscler Thromb Vasc Biol. 2008;28(12):2165–72.

    Article  PubMed  CAS  Google Scholar 

  5. Towler DA. Bone morphogenetic proteins. Blood. 2009;114(10):2012–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Bosse Y, Miqdad A, Fournier D, Pepin A, Pibarot P, Mathieu P. Refining molecular pathways leading to calcific aortic valve stenosis by studying gene expression profile of normal and calcified stenotic human aortic valves. Circ Cardiovasc Genet. 2009;2(5):489–98.

    Article  PubMed  CAS  Google Scholar 

  7. El Husseini D, Boulanger MC, Fournier D, et al. High expression of the Pi-transporter SLC20A1/Pit1 in calcific aortic valve disease promotes mineralization through regulation of Akt-1. PLoS One. 2013;8(1):e53393.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cote N, El HD, Pepin A, et al. ATP acts as a survival signal and prevents the mineralization of aortic valve. J Mol Cell Cardiol. 2012;52(5):1191–202.

    Article  PubMed  CAS  Google Scholar 

  9. Yip CY, Chen JH, Zhao R, Simmons CA. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler Thromb Vasc Biol. 2009;29(6):936–42.

    Article  PubMed  CAS  Google Scholar 

  10. Beck Jr GR. Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem. 2003;90(2):234–43.

    Article  PubMed  CAS  Google Scholar 

  11. Goding JW, Grobben B, Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta. 2003;1638(1):1–19.

    Article  PubMed  CAS  Google Scholar 

  12. Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta. 2008;1783(5):673–94.

    Article  PubMed  CAS  Google Scholar 

  13. Mathieu P. Pharmacology of ectonucleotidases: relevance for the treatment of cardiovascular disorders. Eur J Pharmacol. 2012;696(1–3):1–4.

    Article  PubMed  CAS  Google Scholar 

  14. Goding JW. Ecto-enzymes: physiology meets pathology. J Leukoc Biol. 2000;67(3):285–311.

    PubMed  CAS  Google Scholar 

  15. Stefan C, Jansen S, Bollen M. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci. 2005;30(10):542–50.

    Article  PubMed  CAS  Google Scholar 

  16. Robson SC, Sevigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2006;2(2):409–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Schetinger MR, Morsch VM, Bonan CD, Wyse AT. NTPDase and 5′-nucleotidase activities in physiological and disease conditions: new perspectives for human health. Biofactors. 2007;31(2):77–98.

    Article  PubMed  CAS  Google Scholar 

  18. Mathieu P, Voisine P, Pepin A, Shetty R, Savard N, Dagenais F. Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. J Heart Valve Dis. 2005;14(3):353–7.

    PubMed  Google Scholar 

  19. Koupenova M, Johnston-Cox H, Ravid K. Regulation of atherosclerosis and associated risk factors by adenosine and adenosine receptors. Curr Atheroscler Rep. 2012;14(5):460–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Burnstock G, Williams M. P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther. 2000;295(3):862–9.

    PubMed  CAS  Google Scholar 

  21. Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet. 1998;19(3):271–3.

    Article  PubMed  CAS  Google Scholar 

  22. Nitschke Y, Baujat G, Botschen U, et al. Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6. Am J Hum Genet. 2012;90(1):25–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86(2):267–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Nitschke Y, Weissen-Plenz G, Terkeltaub R, Rutsch F. Npp1 promotes atherosclerosis in ApoE knockout mice. J Cell Mol Med. 2011;15(11):2273–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Johnson K, Pritzker K, Goding J, Terkeltaub R. The nucleoside triphosphate pyrophosphohydrolase isozyme PC-1 directly promotes cartilage calcification through chondrocyte apoptosis and increased calcium precipitation by mineralizing vesicles. J Rheumatol. 2001;28(12):2681–91.

    PubMed  CAS  Google Scholar 

  26. Katz R, Wong ND, Kronmal R, et al. Features of the metabolic syndrome and diabetes mellitus as predictors of aortic valve calcification in the Multi-Ethnic Study of Atherosclerosis. Circulation. 2006;113(17):2113–9.

    Article  PubMed  Google Scholar 

  27. Briand M, Lemieux I, Dumesnil JG, et al. Metabolic syndrome negatively influences disease progression and prognosis in aortic stenosis. J Am Coll Cardiol. 2006;47(11):2229–36.

    Article  PubMed  Google Scholar 

  28. Capoulade R, Clavel MA, Dumesnil JG, et al. Impact of metabolic syndrome on progression of aortic stenosis: influence of age and statin therapy. J Am Coll Cardiol. 2012;60(3):216–23.

    Article  PubMed  Google Scholar 

  29. Mathieu P, Poirier P, Pibarot P, Lemieux I, Despres JP. Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension. 2009;53(4):577–84.

    Article  PubMed  CAS  Google Scholar 

  30. Mohty D, Pibarot P, Despres JP, et al. Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. Arterioscler Thromb Vasc Biol. 2008;28(1):187–93.

    Article  PubMed  CAS  Google Scholar 

  31. Spoto B, Testa A, Parlongo RM, et al. Insulin resistance and left ventricular hypertrophy in end-stage renal disease: association between the ENPP1 gene and left ventricular concentric remodelling. Nephrol Dial Transplant. 2012;27(2):661–6.

    Article  PubMed  CAS  Google Scholar 

  32. Valli-Jaakola K, Suviolahti E, Schalin-Jantti C, et al. Further evidence for the role of ENPP1 in obesity: association with morbid obesity in Finns. Obesity (Silver Spring). 2008;16(9):2113–9.

    Article  CAS  Google Scholar 

  33. Maddux BA, Sbraccia P, Kumakura S, et al. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature. 1995;373(6513):448–51.

    Article  PubMed  CAS  Google Scholar 

  34. Kumakura S, Maddux BA, Sung CK. Overexpression of membrane glycoprotein PC-1 can influence insulin action at a post-receptor site. J Cell Biochem. 1998;68(3):366–77.

    Article  PubMed  CAS  Google Scholar 

  35. Grupe A, Alleman J, Goldfine ID, Sadick M, Stewart TA. Inhibition of insulin receptor phosphorylation by PC-1 is not mediated by the hydrolysis of adenosine triphosphate or the generation of adenosine. J Biol Chem. 1995;270(38):22085–8.

    Article  PubMed  CAS  Google Scholar 

  36. Fadini GP, Pauletto P, Avogaro A, Rattazzi M. The good and the bad in the link between insulin resistance and vascular calcification. Atherosclerosis. 2007;193(2):241–4.

    Article  PubMed  CAS  Google Scholar 

  37. Anderson HC. Matrix vesicles and calcification. Curr Rheumatol Rep. 2003;5(3):222–6.

    Article  PubMed  Google Scholar 

  38. Bertazzo S, Gentleman E, Cloyd KL, Chester AH, Yacoub MH, Stevens MM. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat Mater. 2013;12(6):576–83.

    Article  PubMed  CAS  Google Scholar 

  39. Shaver SR. P2Y receptors: biological advances and therapeutic opportunities. Curr Opin Drug Discov Devel. 2001;4(5):665–70.

    PubMed  CAS  Google Scholar 

  40. Lohman AW, Billaud M, Isakson BE. Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res. 2012;95(3):269–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. St Hilaire, Ziegler SG, Markello TC, et al. NT5E mutations and arterial calcifications. N Engl J Med. 2011;364(5):432–42.

    Google Scholar 

  42. Cloyd KL, El-Hamamsy I, Boonrungsiman S, et al. Characterization of porcine aortic valvular interstitial cell ‘calcified’ nodules. PLoS One. 2012;7(10):e48154.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Della Latta V, Cabiati M, Rocchiccioli S, Del RS, Morales MA. The role of the adenosinergic system in lung fibrosis. Pharmacol Res. 2013;76:182–9.

    Article  PubMed  CAS  Google Scholar 

  44. Mahmut A, Boulanger MC, El Husseini D, et al. Elevated expression of Lp-PLA2 in calcific aortic valve disease: implication for valve mineralization. J Am Coll Cardiol. 2014;63:460–9.

    Google Scholar 

  45. Cote N, El HD, Pepin A, et al. Inhibition of ectonucleotidase with ARL67156 prevents the development of calcific aortic valve disease in warfarin-treated rats. Eur J Pharmacol. 2012;689(1–3):139–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research of the authors is supported by HSFC grant (P.M., P.P., Y.B.) and CIHR grants MOP245048 (P.M.), MOP 79342 (P.P.), MOP102481 (Y.B.), and Quebec Heart and Lung Institute Fund. P. M. and Y.B. are research scholars from the Fonds de Recherche en Santé du Québec, Montreal, Québec, Canada. P.P. holds the Canada Research Chair in Valvular Heart Diseases, Ottawa, Ontario, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Mathieu MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Mathieu, P., Mahmut, A., Pibarot, P., Bossé, Y., Boulanger, MC. (2014). Role of Ectonucleotidases and Purinergic Receptors in Calcific Aortic Valve Disease. In: Rajamannan, N. (eds) Molecular Biology of Valvular Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6350-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6350-3_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6349-7

  • Online ISBN: 978-1-4471-6350-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics