Skip to main content

Identification of Early Pathological Events in Calcific Aortic Valve Disease by Molecular Imaging

  • Chapter
  • First Online:
Molecular Biology of Valvular Heart Disease

Abstract

The aberrant mineralization of soft tissues (i.e., ectopic calcification) recently has been associated with various chronic and degenerative conditions in humans. Cardiovascular tissue, particularly vasculature and valves, are among the peripheral tissues affected by the pathological deposition of calcium phosphate in connective tissue [1]. Although whether ectopic calcification originates from the same causes in different soft tissues is still unclear, the mineralization process seems to be triggered by chronic inflammatory conditions. This relationship has been especially demonstrated in the cardiovascular system, where macrophage infiltration and subsequent release of proteolytic enzymes and cytokines precedes the transformation of vascular smooth muscle cells and valve interstitial cells (VICs) into osteoblast-like cells. Over the last two decades, cardiovascular calcification has gradually gained the attention of more research groups with the acknowledgement that calcification constitutes an independent risk factor for cardiovascular morbidity and mortality [2–7]. Moreover, the prevalence of arterial calcification and calcific aortic valve disease (CAVD) is expected to increase, due to aging worldwide population. An estimated 2.1 million patients in Europe and 3.5 million patients in North America will suffer from severe CAVD by 2025 and 2050, respectively [8]. Therefore, a better understanding of the mechanisms underlying the initiation of CAVD will lead to the development of novel diagnostic and therapeutic methods to improve patients’ quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Q, Uitto J. Mineralization/anti-mineralization networks in the skin and vascular connective tissues. Am J Pathol. 2013;183:10–8.

    Article  PubMed  CAS  Google Scholar 

  2. Budoff MJ, Shaw LJ, Liu ST, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49:1860–70.

    Article  PubMed  Google Scholar 

  3. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24:1161–70.

    Article  PubMed  CAS  Google Scholar 

  4. Katz R, Budoff MJ, Takasu J, et al. Relationship of metabolic syndrome with incident aortic valve calcium and aortic valve calcium progression: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes. 2009;58:813–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Nasir K, Katz R, Al-Mallah M, et al. Relationship of aortic valve calcification with coronary artery calcium severity: the Multi-Ethnic Study of Atherosclerosis (MESA). J Cardiovasc Comput Tomogr. 2010;4:41–6.

    Article  PubMed  Google Scholar 

  6. Takasu J, Budoff MJ, O’brien KD, et al. Relationship between coronary artery and descending thoracic aortic calcification as detected by computed tomography: the Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2009;204:440–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Kelly-Arnold A, Maldonado N, Laudier D, et al. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci U S A. 2013;110:10741–6.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Osnabrugge RL, Mylotte D, Head SJ, et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J Am Coll Cardiol. 2013;62:1002–12.

    Article  PubMed  Google Scholar 

  9. Stewart BF, Siscovick D, Lind BK, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29:630–4.

    Article  PubMed  CAS  Google Scholar 

  10. Allison MA, Cheung P, Criqui MH, et al. Mitral and aortic annular calcification are highly associated with systemic calcified atherosclerosis. Circulation. 2006;113:861–6.

    Article  PubMed  Google Scholar 

  11. Cowell SJ, Newby DE, Prescott RJ, et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 2005;352:2389–97.

    Article  PubMed  CAS  Google Scholar 

  12. Rossebo AB, Pedersen TR, Boman K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359:1343–56.

    Article  PubMed  Google Scholar 

  13. Rajamannan NM, Evans FJ, Aikawa E, et al. Calcific aortic valve disease: not simply a degenerative process a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Circulation. 2011;124:1783–91.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Otto CM. Calcific aortic stenosis – time to look more closely at the valve. N Engl J Med. 2008;359:1395–8.

    Article  PubMed  CAS  Google Scholar 

  15. Clark MA, Duhay FG, Thompson AK, et al. Clinical and economic outcomes after surgical aortic valve replacement in Medicare patients. Risk Manag Healthc Policy. 2012;5:117–26.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Jaffe IZ, Tintut Y, Newfell BG, et al. Mineralocorticoid receptor activation promotes vascular cell calcification. Arterioscler Thromb Vasc Biol. 2007;27:799–805.

    Article  PubMed  CAS  Google Scholar 

  17. Gkizas S, Koumoundourou D, Sirinian X, et al. Aldosterone receptor blockade inhibits degenerative processes in the early stage of calcific aortic stenosis. Eur J Pharmacol. 2010;642:107–12.

    Article  PubMed  CAS  Google Scholar 

  18. Elmariah S, Delaney JA, O’brien KD, et al. Bisphosphonate use and prevalence of valvular and vascular calcification in Women MESA (The Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2010;56:1752–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Pittet MJ, Weissleder R. Intravital imaging. Cell. 2011;147:983–91.

    Article  PubMed  CAS  Google Scholar 

  20. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med. 2003;9:123–8.

    Article  PubMed  CAS  Google Scholar 

  21. Aikawa E, Aikawa M, Libby P, et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation. 2009;119:1785–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Aikawa E, Nahrendorf M, Figueiredo JL, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116:2841–50.

    Article  PubMed  CAS  Google Scholar 

  23. Aikawa E, Nahrendorf M, Sosnovik D, et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 2007;115:377–86.

    Article  PubMed  CAS  Google Scholar 

  24. Hjortnaes J, Butcher J, Figueiredo JL, et al. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur Heart J. 2010;31:1975–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Zaheer A, Lenkinski RE, Mahmood A, et al. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol. 2001;19:1148–54.

    Article  PubMed  CAS  Google Scholar 

  26. Zaheer A, Murshed M, De Grand AM, et al. Optical imaging of hydroxyapatite in the calcified vasculature of transgenic animals. Arterioscler Thromb Vasc Biol. 2006;26:1132–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Kozloff KM, Volakis LI, Marini JC, et al. Near-infrared fluorescent probe traces bisphosphonate delivery and retention in vivo. J Bone Miner Res. 2010;25:1748–58.

    Article  PubMed  CAS  Google Scholar 

  28. Cybulsky MI, Gimbrone Jr MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251:788–91.

    Article  PubMed  CAS  Google Scholar 

  29. Nakashima Y, Raines EW, Plump AS, et al. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol. 1998;18:842–51.

    Article  PubMed  CAS  Google Scholar 

  30. Obrien KD, Allen MD, Mcdonald TO, et al. Vascular cell-adhesion molecule-1 is expressed in human coronary atherosclerotic plaques – implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest. 1993;92:945–51.

    Article  CAS  Google Scholar 

  31. Nahrendorf M, Jaffer FA, Kelly KA, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114:1504–11.

    Article  PubMed  CAS  Google Scholar 

  32. Ghaisas NK, Foley JB, O’briain DS, et al. Adhesion molecules in nonrheumatic aortic valve disease: endothelial expression, serum levels and effects of valve replacement. J Am Coll Cardiol. 2000;36:2257–62.

    Article  PubMed  CAS  Google Scholar 

  33. Thubrikar MJ, Aouad J, Nolan SP. Patterns of calcific deposits in operatively excised stenotic or purely regurgitant aortic valves and their relation to mechanical stress. Am J Cardiol. 1986;58:304–8.

    Article  PubMed  CAS  Google Scholar 

  34. Sun L, Chandra S, Sucosky P. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS One. 2012;7:e48843.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Akahori H, Tsujino T, Naito Y, et al. Intraleaflet haemorrhage is associated with rapid progression of degenerative aortic valve stenosis. Eur Heart J. 2011;32:888–96.

    Article  PubMed  Google Scholar 

  36. Yu Z, Seya K, Daitoku K, et al. Tumor necrosis factor-α accelerates the calcification of human aortic valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5 pathway. J Pharmacol Exp Ther. 2011;337:16–23.

    Article  PubMed  CAS  Google Scholar 

  37. Clark-Greuel JN, Connolly JM, Sorichillo E, et al. Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann Thorac Surg. 2007;83:946–53.

    Article  PubMed  Google Scholar 

  38. Cushing MC, Mariner PD, Liao JT, et al. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J. 2008;22:1769–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Hamilton AM, Rogers KA, Belisle AJ, et al. Early identification of aortic valve sclerosis using iron oxide enhanced MRI. J Magn Reson Imaging. 2010;31:110–6.

    Article  PubMed  Google Scholar 

  40. Šteiner I, Krbal L, Rozkoš T, et al. Calcific aortic valve stenosis: immunohistochemical analysis of inflammatory infiltrate. Pathol Res Pract. 2012;208:231–4.

    Article  PubMed  CAS  Google Scholar 

  41. Wallby L, Janerot-Sjoberg B, Steffensen T, et al. T lymphocyte infiltration in non-rheumatic aortic stenosis: a comparative descriptive study between tricuspid and bicuspid aortic valves. Heart. 2002;88:348–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Otto CM, Kuusisto J, Reichenbach DD, et al. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90:844–53.

    Article  PubMed  CAS  Google Scholar 

  43. Olsson M, Dalsgaard CJ, Haegerstrand A, et al. Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J Am Coll Cardiol. 1994;23:1162–70.

    Article  PubMed  CAS  Google Scholar 

  44. Rabkin E, Aikawa M, Stone JR, et al. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104:2525–32.

    Article  PubMed  CAS  Google Scholar 

  45. Aikawa E, Whittaker P, Farber M, et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation. 2006;113:1344–52.

    Article  PubMed  Google Scholar 

  46. Aikawa M, Rabkin E, Okada Y, et al. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation. 1998;97:2433–44.

    Article  PubMed  CAS  Google Scholar 

  47. Helske S, Syvaranta S, Lindstedt KA, et al. Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler Thromb Vasc Biol. 2006;26:1791–8.

    Article  PubMed  CAS  Google Scholar 

  48. Deguchi JO, Aikawa E, Libby P, et al. Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation. 2005;112:2708–15.

    Article  PubMed  CAS  Google Scholar 

  49. Rabkin-Aikawa E, Aikawa M, Farber M, et al. Clinical pulmonary autograft valves: pathologic evidence of adaptive remodeling in the aortic site. J Thorac Cardiovasc Surg. 2004;128:552–61.

    Article  PubMed  Google Scholar 

  50. Rabkin-Aikawa E, Farber M, Aikawa M, et al. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 2004;13:841–7.

    PubMed  Google Scholar 

  51. Masters KS, Shah DN, Walker G, et al. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J Biomed Mater Res A. 2004;71:172–80.

    Article  PubMed  CAS  Google Scholar 

  52. Rodriguez KJ, Masters KS. Regulation of valvular interstitial cell calcification by components of the extracellular matrix. J Biomed Mater Res A. 2009;90:1043–53.

    Article  PubMed  CAS  Google Scholar 

  53. Yip CY, Chen JH, Zhao R, et al. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler Thromb Vasc Biol. 2009;29:936–42.

    Article  PubMed  CAS  Google Scholar 

  54. Simionescu A, Sirnionescu DT, Vyavahare NR. Osteogenic responses in fibroblasts activated by elastin degradation products and transforming growth factor-beta 1 – role of myofibroblasts in vascular calcification. Am J Pathol. 2007;171:116–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Jacob MP, Fulop T, Foris G, et al. Effect of elastin peptides on ion fluxes in mononuclear-cells, fibroblasts, and smooth-muscle cells. Proc Natl Acad Sci U S A. 1987;84:995–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Belaaouaj AA, Li AG, Wun TC, et al. Matrix metalloproteinases cleave tissue factor pathway inhibitor – effects on coagulation. J Biol Chem. 2000;275:27123–8.

    PubMed  CAS  Google Scholar 

  57. Qin X, Corriere MA, Matrisian LM, et al. Matrix metalloproteinase inhibition attenuates aortic calcification. Arterioscler Thromb Vasc Biol. 2006;26:1510–6.

    Article  PubMed  CAS  Google Scholar 

  58. New SE, Goettsch C, Aikawa M, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113:72–7.

    Article  PubMed  CAS  Google Scholar 

  59. New SE, Aikawa E. Role of extracellular vesicles in de novo mineralization: an additional novel mechanism of cardiovascular calcification. Arterioscler Thromb Vasc Biol. 2013;33:1753–8.

    Article  PubMed  CAS  Google Scholar 

  60. Kapustin AN, Davies JD, Reynolds JL, et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res. 2011;109:E1–U41.

    Article  PubMed  CAS  Google Scholar 

  61. Bertazzo S, Gentleman E, Cloyd KL, et al. Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat Mater. 2013;12:576–83.

    Article  PubMed  CAS  Google Scholar 

  62. Fung E, Tang SM, Canner JP, et al. Delta-like 4 induces notch signaling in macrophages: implications for inflammation. Circulation. 2007;115:2948–56.

    Article  PubMed  CAS  Google Scholar 

  63. Fukuda D, Aikawa E, Swirski FK, et al. Notch ligand delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci U S A. 2012;109:E1868–77.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Farhat GN, Cauley JA, Matthews KA, et al. Volumetric BMD and vascular calcification in middle-aged women: the study of women’s health across the nation. J Bone Miner Res. 2006;21:1839–46.

    Article  PubMed  Google Scholar 

  65. Farhat GN, Strotmeyer ES, Newman AB, et al. Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the health, aging, and body composition study. Calcif Tissue Int. 2006;79:102–11.

    Article  PubMed  CAS  Google Scholar 

  66. Frost ML, Grella R, Millasseau SC, et al. Relationship of calcification of atherosclerotic plaque and arterial stiffness to bone mineral density and osteoprotegerin in postmenopausal women referred for osteoporosis screening. Calcif Tissue Int. 2008;83:112–20.

    Article  PubMed  CAS  Google Scholar 

  67. Hirasawa H, Tanaka S, Sakai A, et al. ApoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells. J Bone Miner Res. 2007;22:1020–30.

    Article  PubMed  CAS  Google Scholar 

  68. Tekin GO, Kekilli E, Yagmur J, et al. Evaluation of cardiovascular risk factors and bone mineral density in post menopausal women undergoing coronary angiography. Int J Cardiol. 2008;131:66–9.

    Article  PubMed  Google Scholar 

  69. Demer LL, Tintut Y. Mechanisms linking osteoporosis with cardiovascular calcification. Curr Osteoporos Rep. 2009;7:42–6.

    Article  PubMed  Google Scholar 

  70. Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    Article  PubMed  CAS  Google Scholar 

  71. Rudd JH, Narula J, Strauss HW, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol. 2010;55:2527–35.

    Article  PubMed  Google Scholar 

  72. Blau M, Ganatra R, Bender MA. 18F-fluoride for bone imaging. Semin Nucl Med. 1972;2:31–7.

    Article  PubMed  CAS  Google Scholar 

  73. Grant FD, Fahey FH, Packard AB, et al. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.

    Article  PubMed  Google Scholar 

  74. Derlin T, Richter U, Bannas P, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51:862–5.

    Article  PubMed  Google Scholar 

  75. Derlin T, Wisotzki C, Richter U, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52:362–8.

    Article  PubMed  Google Scholar 

  76. Folco EJ, Sheikine Y, Rocha VZ, et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J Am Coll Cardiol. 2011;58:603–14.

    Article  PubMed  CAS  Google Scholar 

  77. Marincheva-Savcheva G, Subramanian S, Qadir S, et al. Imaging of the aortic valve using fluorodeoxyglucose positron emission tomography increased valvular fluorodeoxyglucose uptake in aortic stenosis. J Am Coll Cardiol. 2011;57:2507–15.

    Article  PubMed  Google Scholar 

  78. Liu L, Gardecki JA, Nadkarni SK, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med. 2011;17:1010–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institute of Health grants (R01HL114805 and R01HL109506 to E.A.) EMM was a Research Fellow supported by Consejo Nacional de Ciencia y Tecnología (CONACYT; Estancias Postdoctorales y Sabáticas al extranjero: 175413) and Fundación México en Harvard, A.C. The authors thank Sara Karwacki for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Aikawa MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Martínez-Martínez, E., Aikawa, E. (2014). Identification of Early Pathological Events in Calcific Aortic Valve Disease by Molecular Imaging. In: Rajamannan, N. (eds) Molecular Biology of Valvular Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-6350-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6350-3_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6349-7

  • Online ISBN: 978-1-4471-6350-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics