Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1820 Accesses

Abstract

Selective metallization of glass can be used to incorporate microelectronic components in microfluidic systems making it an important technique for further enhancing the functions of biochips. Both femtosecond-laser-assisted electroless plating and femtosecond laser surface modification combined with electroless plating can be used to selectively deposit thin metal films only on laser irradiated regions, even on the internal walls of microfluidic structures. Additionally, two-photon-induced metal ion reduction of a liquid or polymer containing metal ions by femtosecond laser direct writing can be used to fabricate three-dimensional metal microstructures on glass substrates that have a high electrical conductivity. These metallization techniques can be utilized to manufacture functional microcomponents including microheaters for space-selective control of temperature in microfluidic systems and surface-enhanced Raman scattering platforms for highly sensitive analysis of biochemical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcinkevičius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279

    Article  Google Scholar 

  2. Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860

    Article  Google Scholar 

  3. Bellouard Y, Said A, Dugan M et al (2004) Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express 12:2120–2129

    Article  Google Scholar 

  4. Masuda M, Sugioka K, Cheng Y et al (2004) Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:1029–1032

    Article  Google Scholar 

  5. Kiyama S, Tomita T, Matsuo S et al (2009) Laser fabrication and manipulation of an optical rotator embedded inside a transparent solid material. J Laser Micro Nanoengin 4:18–21

    Article  Google Scholar 

  6. Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731

    Article  Google Scholar 

  7. Li ZL, Low DKY, Ho MK et al (2006) Fabrication of waveguides in Foturan by femtosecondlaser. J Laser Appl 18:320–324

    Article  Google Scholar 

  8. Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146

    Article  Google Scholar 

  9. Cheng Y, Tsai HL, Sugioka K et al (2006) Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl Phys A 85:11–14

    Article  Google Scholar 

  10. Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955

    Article  Google Scholar 

  11. Hanada Y, Sugioka K, Shihira-Ishikawa I et al (2011) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115

    Article  Google Scholar 

  12. Hanada Y, Sugioka K, Midorikawa K (2008) Selective metallization of photostructurable glass by femtosecond laser direct writing for biochip application. Appl Phys A 90:603–607

    Article  Google Scholar 

  13. Zhou Z, Xu J, He F et al (2010) Surface-enhanced Raman scattering substrate fabricated by femtosecond laser induced co-deposition of silver nanoparticles and fluorescent molecules. Jpn J Appl Phys 49:022703

    Article  Google Scholar 

  14. Holland L (1963) Vacuum deposition of thin films. Chapman and Hall, London

    Google Scholar 

  15. Nakajima Y, Kusuyama K, Yamaguchi H et al (1992) Growth of single-crystal aluminium films on silicon substrates by DC magnetron sputtering. Jpn J Appl Phys 31:1860–1867

    Article  Google Scholar 

  16. Jain A, Chi KM, Kodas TT et al (1993) Chemical vapor deposition of copper from hexafluoroacetylacetonato copper(I)—vinyltrimethylsilane deposition rates, mechanism, selectivity, morphology, and resistivity as a function of temperature and pressure. J Electrochem Soc 140:1434–1439

    Article  Google Scholar 

  17. Sugioka K, Gu B, Holmes A (2007) The state of the art and future prospects for laser direct-write for industrial and commercial applications. MRS Bull 32:47–54

    Article  Google Scholar 

  18. Zhang J, Sugioka K, Midorikawa K (1999) Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser. Opt Lett 23:1486–1488

    Article  Google Scholar 

  19. Hanada Y, Sugioka K, Gomi Y et al (2004) Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials. Appl Phys A 79:1001–1003

    Article  Google Scholar 

  20. Adrian FJ, Bohandy J, Kim BF et al (1987) A study of the mechanism of metal-deposition by the laser-induced forward transfer. J Vac Sci Technol 5:1490–1494

    Article  Google Scholar 

  21. Esrom H, Zhang J, Kogelschatz U et al (1995) New approach of a laser-induced forward transfer for deposition of patterned thin metal films. Appl Surf Sci 86:202–207

    Article  Google Scholar 

  22. Glezer EN, Milosavljevic M, Huang L et al (1996) Three-dimensional optical storage inside transparent materials. Opt Lett 21:2023–2025

    Article  Google Scholar 

  23. Sugioka K, Hongo T, Takai H et al (2005) Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl Phys Lett 86:171910

    Article  Google Scholar 

  24. Xu J, Liao Y, Zeng HD et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748

    Article  Google Scholar 

  25. Xu J, Liao Y, Zeng HD et al (2008) Mechanism study of femtosecond laser induced selective metallization (FLISM) on glass surfaces. Opt Commun 281:3505–3509

    Article  Google Scholar 

  26. Baldacchini T, Pons AC, Pons J et al (2005) Multiphoton laser direct writing of twodimensional silver structures. Opt Express 13:1275–1280

    Article  Google Scholar 

  27. Tanaka T, Ishikawa A, Kawata S (2006) Two-photon-induced reduction of metal ions for fabricating three dimensional electricalally conductive metallic microstructure. Appl Phys Lett 88:081107

    Article  Google Scholar 

  28. Schaffer CB, García JF, Mazur E (2004) Bulk heating of transparent materials using a high-repetitionrate femtosecond laser. Appl Phys A 76:351–354

    Article  Google Scholar 

  29. Watanabe W, Onda S, Tamaki T et al (2006) Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses. Appl Phys Lett 89:021106

    Article  Google Scholar 

  30. Liao Y, Xu J, Cheng Y et al (2008) Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33:2281–2283

    Article  Google Scholar 

  31. Maruo S, Saeki T (2008) Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt Express 16:1174–1179

    Article  Google Scholar 

  32. Cao YY, Takeyasu N, Tanaka T et al (2009) 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5:1144–1148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sugioka .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Sugioka, K., Cheng, Y. (2014). Selective Metallization of Glass. In: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications. SpringerBriefs in Applied Sciences and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5541-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5541-6_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5540-9

  • Online ISBN: 978-1-4471-5541-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics