Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Femtosecond lasers have excellent characteristics for materials processing due to their ultrashort pulse widths and extremely high peak powers. When a femtosecond laser beam with a moderate pulse energy is focused into glass, multiphoton absorption or tunneling ionization is confined to a region near the focal point inside the glass. Femtosecond lasers can thus perform internal modification of glass. Internal modification is widely used to fabricate microfluidic structures and micro-optical components, which can be used to produce biomicrochips for biochemical analysis. This chapter reviews the fundamentals and characteristics of femtosecond laser processing. It also introduces state-of-the-art femtosecond laser processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srinivasan R, Sutcliffe E, Braren B (1987) Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl Phys Lett 51:1285–1287

    Article  Google Scholar 

  2. Küper S, Stuke M (1987) Femtosecond uv excimer laser ablation. Appl Phys B 44:99–204

    Article  Google Scholar 

  3. Küper S, Stuke M (1989) Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV exicimer laser pulses. Appl Phys Lett 54:4–6

    Article  Google Scholar 

  4. Küper S, Stuke M (1989) Ablation of uv-transparent materials with femtosecond UV excimer laser pulses. Microelectron Eng 9:475–480

    Article  Google Scholar 

  5. Momma C, Chichkov BN, Nolte S et al (1996) Short-pulse laser ablation of solid targets. Opt Commun 129:134–142

    Article  Google Scholar 

  6. Yanik MF, Cinar H, Cinar HN et al (2004) Neurosurgery: functional regeneration after laser axotomy. Nature 432:822–822

    Article  Google Scholar 

  7. Barsch N, Korber K, Ostendorf A et al (2003) Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl Phys A 77:237–242

    Google Scholar 

  8. Nakata Y, Okada T, Maeda M (2002) Fabrication of dot matrix, comb, and nanowire structures using laserablation by interfered femtosecond laser beams. Appl Phys Lett 81:4239–4241

    Article  Google Scholar 

  9. Reif J, Costache F, Henyk M et al (2002) Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl Surf Sci 197–198:891–895

    Article  Google Scholar 

  10. Wu Q, Ma Y, Fang R et al (2003) Femtosecond laser-induced periodic surface structure on diamond film. Appl Phys Lett 82:1703–1705

    Article  Google Scholar 

  11. Rudolph P, Kautek W (2004) Composition influence of non-oxidic ceramics on self-assembled nanostructures due to fs-laser irradiation. Thin Solid Films 453–454:537–541

    Article  Google Scholar 

  12. Miyaji G, Miyazaki K (2006) Ultrafast dynamics of periodic nanostructure forma-tion on diamondlikecarbon films irradiated with femtosecond laser pulses. Appl Phys Lett 89:191902

    Article  Google Scholar 

  13. Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731

    Article  Google Scholar 

  14. Glezer EN, Milosavljevic M, Huang L et al (1996) Three-dimensional optical storage inside transparent materials. Opt Lett 21:2023–2025

    Article  Google Scholar 

  15. Watanabe W, Sowa S, Tamaki T et al (2006) Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser. Jpn J Appl Phys 45:L765–L767

    Article  Google Scholar 

  16. Hanada Y, Sugioka K, Midorikawa K (2010) UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing. Opt Express 18:446–450

    Article  Google Scholar 

  17. Kawata S, Sun HB, Tanaka T et al (2001) Finer features for functional microdevices. Nature 412:697–698

    Article  Google Scholar 

  18. Fan WS, Storz R, Tom HWK et al (1992) Electron thermalization in gold. Phys Rev B 46:13592–13595

    Article  Google Scholar 

  19. Sun CK, Vallée F, Acioli LH et al (1994) Femtosecond-tunable measurement of electron thermalization in gold. Phys Rev B 50:15337–15348

    Article  Google Scholar 

  20. Wellershoff SS, Hohlfeld J, Güdde J et al (1999) The role of electron-phonon coupling in femtosecond laser damage of metals. Appl Phys A 69:S99–S107

    Google Scholar 

  21. Hohlfeld J, Wellershoff SS, Güdde J et al (2000) Electron and lattice dynamics following optical excitation of metals. Chem Phys 251:237–258

    Article  Google Scholar 

  22. Anisimov SI, Rethfeld B (1997) Theory of ultrashort laser pulse interaction with a metal. Proc SPIE 3093:192–203

    Article  Google Scholar 

  23. Corkum PB, Brunel F, Sherman NK et al (1988) Thermal response of metals to ultrashort pulse laser excitation. Phys Rev Lett 61:2886–2889

    Article  Google Scholar 

  24. Fujita M, Hashida M (2004) Applications of femtosecond lasers. Oyo Buturi 73:178–185 (in Japanese)

    Google Scholar 

  25. Keldysh LV (1965) Ionization in field of a strong electromagnetic wave. Sov Phys JETP 20:1307–1314

    MathSciNet  Google Scholar 

  26. Mao SS, Quere F, Guizard S et al (2004) Dynamics of femtosecond laser interactions with dielectrics. Appl Phys A 79:1695–1709

    Article  Google Scholar 

  27. Chichkov BN, Momma C, Nolte S et al (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115

    Article  Google Scholar 

  28. Nakashima S, Sugioka K, Midorikawa K (2010) Enhancement of resolution and quality of nano-hole structure on GaN substrates using the second-harmonic beam of near-infrared femtosecond laser. Appl Phys A 101:475–481

    Article  Google Scholar 

  29. Nakashima S, Sugioka K, Ito T et al (2011) Fabrication of high-aspect-ratio nanohole arrays on GaN surface by using wet-chemical-assisted femtosecond laser ablation. J Laser Micro/Nanoeng 6:15–19

    Article  Google Scholar 

  30. Nakata Y, Okada T, Maeda M (2003) Nano-sized hollow bump array generated by single femtosecond laser pulse. Jpn J Appl Phys 42:L1452–L1454

    Article  Google Scholar 

  31. Nakata Y, Okada T, Maeda M (2004) Lithographical laser ablation using femto-second laser. Appl Phys A 79:1481–1483

    Google Scholar 

  32. Nakata Y, Miyanaga N, Okada T (2007) Effect of pulse width and fluence of femtosecond laser on the size of nanobump array. Appl Surf Sci 253:6555–6557

    Article  Google Scholar 

  33. Nakata Y, Tsuchida K, Miyanaga N et al (2009) Liquidly process in femtosecond laser processing. Appl Surf Sci 255:9761–9763

    Article  Google Scholar 

  34. Nakata Y, Hiromoto T, Miyanaga N (2009) Frozen water drops in the nanoworld. SPIE Newsroom. doi:10.1117/2.1200906.1708

    Google Scholar 

  35. Nakata Y, Momoo K, Hiromoto T et al (2011) Generation of superfine structure smaller than 10 nm by interfering femtosecond laser processing. Proc SPIE 7920:79200B

    Article  Google Scholar 

  36. Watanabe W, Asano T, Yamada K et al (2003) Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt Lett 28:2491–3493

    Article  Google Scholar 

  37. Sudrie L, Winick KA (2003) Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses. J Lightwave Technol 21:246–253

    Article  Google Scholar 

  38. Bricchi E, Mills JD, Kazamsky PG et al (2002) Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt Lett 27:2200–2202

    Article  Google Scholar 

  39. Valle GD, Taccheo S, Osellame R et al (2007) 1.5μm single longitudinal mode waveguide laser fabricated by femtosecond laser writing. Opt Express 84:3190–3194

    Article  Google Scholar 

  40. Marcinkevicius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279

    Article  Google Scholar 

  41. Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860

    Article  Google Scholar 

  42. Sugioka K, Cheng Y, Midorikawa K (2005) Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl Phys A 81:1–10

    Article  Google Scholar 

  43. Sugioka K, Hanada Y, Midorikawa K (2010) Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser Photon Rev 4:386–400

    Article  Google Scholar 

  44. Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36:1020–1027

    Article  Google Scholar 

  45. Sugioka K, Cheng Y (2011) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589

    Article  Google Scholar 

  46. Cumpston B, Ananthavel S, Barlow S et al (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54

    Article  Google Scholar 

  47. Sun HB, Matsuo S, Misawa H (1999) Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl Phys Lett 74:786–788

    Article  Google Scholar 

  48. Serbin J, Ovsianikov A, Chichkov B (2004) Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Opt Express 12:5221–5228

    Article  Google Scholar 

  49. Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89:144101

    Article  Google Scholar 

  50. Maruo S, Inoue H (2007) Optically driven viscous micropump using a rotating microdisk. Appl Phys Lett 91:084101

    Article  Google Scholar 

  51. Tian Y, Zhang YL, Ku JF et al (2010) High performance magnetically controllable microturbines. Lab Chip 10:2902–2905

    Article  Google Scholar 

  52. Wang J, He Y, Xia H et al (2010) Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization. Lab Chip 10:1993–1996

    Article  Google Scholar 

  53. Wu D, Chen QD, Niu LG et al (2009) Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices. Lab Chip 9:2391–2394

    Article  Google Scholar 

  54. Ovsianikov A, Malinauskas M, Schlie S et al (2011) Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater 7:967–974

    Article  Google Scholar 

  55. Farsari M, Chichkov B (2009) Two-photon fabrication. Nature Photon 3:450–452

    Article  Google Scholar 

  56. Tan DF, Li Y, Qi FG et al (2007) Reduction in feature size of two-photon polymerization using SCR500. Appl Phys Lett 90:071106

    Article  Google Scholar 

  57. Sakabe S, Hashida M, Tokita S et al (2009) Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse. Phys Rev B 79:033409

    Article  Google Scholar 

  58. Yasumaru N, Miyazaki K, Kiuchi J (2003) Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC. Appl Phys A 76:983–985

    Article  Google Scholar 

  59. Borowiec A, Hauge HK (2003) Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl Phys Lett 82:4462–4464

    Article  Google Scholar 

  60. Costache F, Henyk M, Reif J (2003) Surface patterning on insulators upon femtosecond laser ablation. Appl Surf Sci 208:486–491

    Article  Google Scholar 

  61. Her TH, Finlay RJ, Wu C et al (1998) Microstructuring of silicon with femtosecond laser pulses. Appl Phys Lett 73:1673–1675

    Article  Google Scholar 

  62. Baldacchini T, Carey JE, Zhou M et al (2006) Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir 22:4917–4919

    Article  Google Scholar 

  63. Carey JE, Crouch CH, Shen M et al (2005) Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt Lett 30:1773–1775

    Article  Google Scholar 

  64. Younkin R, Carey JE, Mazur E et al (2003) Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses. J Appl Phys 93:2626–2629

    Article  Google Scholar 

  65. Wang F, Chen C, He H et al (2011) Analysis of sunlight loss for femtosecond laser microstructed silicon and its solar cell efficiency. Appl Phys A 103:977–982

    Article  Google Scholar 

  66. Zorba V, Stratakis E, Barberoglou M et al (2008) Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 20:4049–4054

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sugioka .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Sugioka, K., Cheng, Y. (2014). Fundamentals of Femtosecond Laser Processing. In: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications. SpringerBriefs in Applied Sciences and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5541-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5541-6_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5540-9

  • Online ISBN: 978-1-4471-5541-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics