Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1749 Accesses

Abstract

The primary goal of this book is to comprehensively review state-of-the-art femtosecond laser three-dimensional (3D) micromachining techniques for microfluidic and optofluidic applications, including techniques for fabricating microfluidic components, optical waveguides, free-space micro-optical components, microelectrodes, and integrated optofluidic systems and devices. It also presents typical examples of applications of femtosecond-laser-fabricated microfluidic and optofluidic chips for chemical sensing and investigating biological species. Comparison with conventional lithography-based fabrication techniques reveals the uniqueness and versatility of femtosecond laser micromachining. In this chapter, we summarize the results and contributions presented in this book and overview the future outlook of this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Napoli M, Eijkel JCT, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985

    Article  Google Scholar 

  2. Abgrall P, Nguyen NT (2008) Nanofluidic devices and their applications. Anal Chem 80:2326–2341

    Article  Google Scholar 

  3. Kazansky PG, Yang W, Bricchi E et al (2007) “Quill” writing with ultrashort light pulses in transparent materials. Appl Phys Lett 90:151120(3)

    Google Scholar 

  4. Vitek DN, Block E, Bellouard Y (2010) Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. Opt Express 18:24673–24678

    Article  Google Scholar 

  5. Yang WJ, Kazansky PG, Svirko YP (2008) Non-reciprocal ultrafast laser writing. Nat Photonics 2:99–104

    Article  Google Scholar 

  6. He F, Xu H, Cheng Y et al (2010) Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 35:1106–1108

    Article  Google Scholar 

  7. Durfee CG, Greco M, Block E et al (2012) Intuitive analysis of space-time focusing with double-ABCD calculation. Opt Express 20:14244–14259

    Article  Google Scholar 

  8. Stoian R, Boyle M, Thoss A et al (2002) Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl Phys Lett 80:353–355

    Article  Google Scholar 

  9. Kiyama S, Matsuo S, Hashimoto S et al (2009) Examination of Etching Agent and Etching Mechanism on Femotosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates. J Phys Chem C 113:11560–11566

    Article  Google Scholar 

  10. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic Large Scale Integration. Science 298:580–584

    Article  Google Scholar 

  11. Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227

    Article  Google Scholar 

  12. Liao Y, Song J, Li E (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749

    Article  Google Scholar 

  13. Tünnermann A, Schreiber T, Limpert J et al (2010) Fiber lasers and amplifiers: an ultrafast performance evolution. Appl Opt 49:F71–F78

    Article  Google Scholar 

  14. Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  15. Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114

    Article  Google Scholar 

  16. Erickson D, Sinton D, Psaltis D (2011) Optofluidics for energy applications. Nat Photonics 5:583–590

    Article  Google Scholar 

  17. Zhou Z, Xu J, Cheng Y (2008) Surface-enhanced Raman scattering substrate fabricated by femtosecond laser direct writing. Jpn J Appl Phys 47:189–192

    Article  Google Scholar 

  18. Sugioka K, Cheng Y, Midorikawa K (2007) “All-in-One” Chip Fabrication by 3D Femtosecond Laser Microprocessing for Biophotonics. J Phys: Conf Ser 59:533–538

    Google Scholar 

  19. Balslev S, Jorgensen AM, Bilenberg B (2006) Lab-on-a-chip with integrated optical transducers. Lab Chip 6:213–217

    Article  Google Scholar 

  20. Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36:1020–1027

    Article  Google Scholar 

  21. Osellame R, Hoekstra HJWM, Cerullo1 G et al (2011) Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser Photonics Rev 5:442–463

    Google Scholar 

  22. Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:8–9

    Article  Google Scholar 

  23. Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sugioka .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Sugioka, K., Cheng, Y. (2014). Summary and Outlook. In: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications. SpringerBriefs in Applied Sciences and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5541-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5541-6_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5540-9

  • Online ISBN: 978-1-4471-5541-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics