Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Femtosecond lasers have opened up new avenues in materials processing due to their unique characteristics of ultrashort pulse widths and extremely high peak intensities. One of the most important features of femtosecond laser processing is that a femtosecond laser beam can induce strong absorption in even transparent materials due to nonlinear multiphoton absorption. Multiphoton absorption enables both surface and internal three-dimensional modification and microfabrication of transparent materials such as glasses. This makes it possible to directly fabricate three-dimensional microfluidic, micromechanic, microelectronic, and micro-optical components in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser. Thus, femtosecond laser processing has several advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabricating microfluidic, optofluidic, and lab-on-a-chip devices. Consequently, this topic is currently being intensively studied. This book gives a comprehensive review of the state of the art and future prospects of femtosecond laser processing for fabricating devices such as biomicrochips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns MA, Johnson BN, Brahmasandra AN et al (1998) An integrated nanoliter DNA analysis device. Science 282:484–487

    Article  Google Scholar 

  2. Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907

    Google Scholar 

  3. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  4. McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499

    Article  Google Scholar 

  5. Burg TP, Mirza AR, Milovic N et al (2006) Vacuum packaged suspended microchannel resonant mass sensor for biomolecular detection. IEEE/ASME J Microelectromech Syst 15:1466–1476

    Article  Google Scholar 

  6. Tokeshi M, Minagawa T, Uchiyama K et al (2002) Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal Chem 74:1565–1571

    Article  Google Scholar 

  7. Sugioka K, Hanada Y, Midorikawa K (2010) Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser & Photon Rev 4:386–400

    Article  Google Scholar 

  8. Sugioka K, Cheng Y (2011) Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull 36:1020–1027

    Article  Google Scholar 

  9. Sugioka K, Cheng Y (2012) Femtosecond laser processing for optofluidic fabrication. Lab Chip 12:3576–3589

    Article  Google Scholar 

  10. Küper S, Stuke M (1989) Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses. Appl Phys Lett 54:4–6

    Article  Google Scholar 

  11. Küper S, Stuke M (1989) Ablation of uv-transparent materials with femtosecond uv excimer laser pulses. Microelectron Eng 9:475–480

    Article  Google Scholar 

  12. Davis KM, Miura K, Sugimoto N et al (1996) Writing waveguides in glass with a femtosecond laser. Opt Lett 21:1729–1731

    Article  Google Scholar 

  13. Glezer EN, Milosavljevic M, Huang L et al (1996) Three-dimensional optical storage inside transparent materials. Opt Lett 21:2023–2025

    Article  Google Scholar 

  14. Marcinkevicius A, Juodkazis S, Watanabe M et al (2001) Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26:277–279

    Article  Google Scholar 

  15. Masuda M, Sugioka K, Cheng Y et al (2003) 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A 76:857–860

    Article  Google Scholar 

  16. Cheng Y, Sugioka K, Midorikawa K (2005) Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl Phys A 81:1–10

    Article  Google Scholar 

  17. Masuda M, Sugioka K, Cheng Y et al (2004) Direct fabrication of freely movable microplate inside photosensitive glass by femtosecond laser for lab-on-chip application. Appl Phys A 78:1029–1032

    Article  Google Scholar 

  18. Matsuo S, Kiyama S, Shichijo Y et al (2008) Laser microfabrication and rotation of ship-in-a-bottle optical rotators. Appl Phys Lett 93:051107

    Article  Google Scholar 

  19. Cheng Y, Sugioka K, Midorikawa K et al (2003) Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. Opt Lett 28:1144–1146

    Article  Google Scholar 

  20. Cheng Y, Tsai HL, Sugioka K et al (2005) Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl Phys A 85:11–14

    Article  Google Scholar 

  21. Wang Z, Sugioka K, Midorikawa K (2007) Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 89:951–955

    Article  Google Scholar 

  22. Li Y, Itoh K, Watanabe W et al (2001) Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt Lett 26:1912–1914

    Article  Google Scholar 

  23. An R, Li Y, Dou Y et al (2005) Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt Express 13:1855–1859

    Article  Google Scholar 

  24. Liao Y, Ju Y, Zhang L et al (2010) Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt Lett 35:3225–3227

    Article  Google Scholar 

  25. Liao Y, Song J, Li E et al (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12:746–749

    Article  Google Scholar 

  26. Yamada K, Watanabe W, Toma T et al (2001) In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses. Opt Lett 26:19–21

    Article  Google Scholar 

  27. Schaffer CB, Brodeur A, Garcia JF et al (2001) Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt Lett 26:93–95

    Article  Google Scholar 

  28. Bricchi E, Mills JD, Kazamsky PG et al (2002) Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt Lett 27:2200–2202

    Article  Google Scholar 

  29. Kawamura K, Hirano M, Kamiya T et al (2002) Holographic writing of volume-type microgratings in silica glass by a single chirped laser pulse. Appl Phys Lett 81:1137–1139

    Article  Google Scholar 

  30. Watanabe W, Kuroda D, Itoh K et al (2002) Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses. Opt Express 10:978–983

    Article  Google Scholar 

  31. Gorelik M, Will S, Nolte A et al (2003) Transmission electron microscopy studies of femtosecond laser induced modifications in quartz. Appl Phys A 76:309–311

    Article  Google Scholar 

  32. Watanabe W, Asano T, Yamada K et al (2003) Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses. Opt Lett 28:2491–2493

    Article  Google Scholar 

  33. Sudrie L, Winick KA (2003) Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulsesJ. Lightwave Technol 21:246–253

    Article  Google Scholar 

  34. Cheng Y, Sugioka K, Midorikawa K (2004) Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29:2007–2009

    Article  Google Scholar 

  35. Wang Z, Sugioka K, Hanada Y et al (2007) Optical waveguide fabrication and integration with a micro-mirror inside photosensitive glass by femtosecond laser direct writing. Appl Phys A 88:699–704

    Article  Google Scholar 

  36. Wang Z, Sugioka K, Midorikawa K (2008) Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of Foturan glass. Appl Phys A 93:225–229

    Article  Google Scholar 

  37. Sugioka K, Hongo T, Takai H et al (2005) Selective metallization of internal walls of hollow structures inside glass using femtosecond laser. Appl Phys Lett 86:171910

    Article  Google Scholar 

  38. Xu J, Liao Y, Zeng H et al (2007) Selective metallization on insulator surfaces with femtosecond laser pulses. Opt Express 15:12743–12748

    Article  Google Scholar 

  39. Hanada Y, Sugioka K, Kawano H et al (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10:403–410

    Article  Google Scholar 

  40. Hanad a Y, Sugioka K, S-Ishikawa I et al (2008) 3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria. Lab Chip 11:2109–2115

    Article  Google Scholar 

  41. Crespi A, Gu Y, Ngamsom B et al (2010) Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. Lab Chip 10:1167–1173

    Article  Google Scholar 

  42. Hanada Y, Sugioka K, Midorikawa K (2012) Highly sensitive optofluidic chips for biochemical liquid assay fabricated by 3D femtosecond laser micromachining followed by polymer coating. Lab Chip 12:3639–3688

    Article  Google Scholar 

  43. Kim M, Hwang DJ, Jeon H et al (2009) Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Lab Chip 9:311–318

    Article  Google Scholar 

  44. Bragheri F, Ferrara L, Bellini N et al (2010) Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond laser. J Biophotonics 3:234–243

    Article  Google Scholar 

  45. Bellini N, Vishnubhatla KC, Bragheri F et al (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18:4679–4688

    Article  Google Scholar 

  46. Schaap A, Bellouard Y, Rohrlack T (2011) Optofluidic lab-on-a-chip for rapid algae population screening. Opt Express 2:658–664

    Article  Google Scholar 

  47. Schaap A, Rohrlack T, Bellouard Y (2012) Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 12:1527–1532

    Article  Google Scholar 

  48. Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:8–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Sugioka .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Sugioka, K., Cheng, Y. (2014). Introduction. In: Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications. SpringerBriefs in Applied Sciences and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5541-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5541-6_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5540-9

  • Online ISBN: 978-1-4471-5541-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics