Skip to main content

Anticoagulation Therapy. Heparins, Factor II and Factor Xa Inhibitors

  • Chapter
  • First Online:
Pharmacological Treatment of Acute Coronary Syndromes

Abstract

The use of anticoagulant therapy plays an important role particularly in the early management of patients with acute coronary syndrome (ACS) and in those undergoing percutaneous coronary interventions (PCI). These include a variety of agents available for parenteral administration which may be chosen depending on the level of ischemic and hemorrhagic risk of the patient as well as the planned early management (conservative vs. invasive). Indeed, not only the choice of therapy by also timing of administration and cessation are key determinant of short and long-term outcomes of anticoagulant therapies in the setting of ACS and PCI. Given that ACS patients persist with elevated thrombin levels following an ACS event, there also has been an emerging interest on adding oral anticoagulant therapy to standard antiplatelet regiment for long-term secondary prevention of ischemic event. The present chapter is an overview of the different options of anticoagulant therapy that are available for use in ACS and PCI patients. In particular, the basic principles of pharmacology, rationale for use, indications, contraindications, dosing considerations and side effects of currently available anticoagulant therapies are summarized and recent advances in the field provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies MJ, Thomas AC. Plaque fissuring-the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J. 1985;53:363–73.

    Article  PubMed  CAS  Google Scholar 

  2. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93(7):1354–63.

    Article  PubMed  CAS  Google Scholar 

  3. Braunwald E. Unstable angina and non-ST elevation myocardial infarction. Am J Respir Crit Care Med. 2012;185:924–32.

    Article  PubMed  CAS  Google Scholar 

  4. Furie B, Furie BC. Molecular and cellular biology of blood coagulation. N Engl J Med. 1992;326:800–6.

    Article  PubMed  CAS  Google Scholar 

  5. Chesebro JH, Zoldhelyi P, Badimon L, et al. Role of thrombin in arterial thrombosis: implications for therapy. Thromb Haemost. 1991;66:1–5.

    PubMed  CAS  Google Scholar 

  6. Bar-Shavit R, Eldor A, Vlodavsky I. Binding of thrombin to subendothelial extracellular matrix: protection and expression of functional properties. J Clin Invest. 1989;84:1096–104.

    Article  PubMed  CAS  Google Scholar 

  7. Hogg PJ, Jackson CM. Fibrin monomer protects thrombin from inactivation by heparin-antithrombin III: implications for heparin efficacy. Proc Natl Acad Sci USA. 1989;86:3619–23.

    Article  PubMed  CAS  Google Scholar 

  8. Weitz JI, Hudoba M, Massel D, et al. Clot-bound thrombin is protected from inhibition by heparinantithrombin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest. 1990;86:385–91.

    Article  PubMed  CAS  Google Scholar 

  9. Weitz JI, Leslie B, Hudoba M. Thrombin binds to soluble fibrin degradation products where it is protected from inhibition by heparin-antithrombin but susceptible to inactivation by antithrombin- independent inhibitors. Circulation. 1998;97:544–52.

    Article  PubMed  CAS  Google Scholar 

  10. Serruys P, Vranckx P, Allikmets K, et al. Clinical development of bivalirudin (angiox): rationale for thrombin-specific anticoagulation in percutaneous coronary intervention and acute coronary syndromes. Int J Clin Pract. 2006;60:344–50.

    Article  PubMed  CAS  Google Scholar 

  11. De Caterina R, Husted S, Wallentin L, et al. General mechanisms of coagulation and targets of anticoagulants (Section I). Position Paper of the ESC Working Group on Thrombosis – Task Force on Anticoagulants in Heart Disease. Thromb Haemost. 2013;109:569–79.

    Article  PubMed  CAS  Google Scholar 

  12. Di Nisio M, Middeldorp S, Buller HR. Direct thrombin inhibitors. N Engl J Med. 2005;353:1028–40.

    Article  PubMed  Google Scholar 

  13. McAllister BM, Demis DJ. Heparin metabolism: isolation and characterization of uroheparin. Nature. 1966;212:293–4.

    Article  PubMed  CAS  Google Scholar 

  14. Hirsh J. Heparin. N Engl J Med. 1992;324:1565–74.

    Google Scholar 

  15. Hull RD, Raskob GE, Hirsh J, et al. Continuous intravenous heparin compared with intermittent SC heparin in the initial treatment of proximal-vein thrombosis. N Engl J Med. 1986;315:1109–14.

    Article  PubMed  CAS  Google Scholar 

  16. Hirsh J, van Aken WG, Gallus AS, et al. Heparin kinetics in venous thrombosis and pulmonary embolism. Circulation. 1976;53:691–5.

    Article  PubMed  CAS  Google Scholar 

  17. Young E, Prins M, Levine MN, et al. Heparin binding to plasma proteins, an important mechanism for heparin resistance. Thromb Haemost. 1992;67:639–43.

    PubMed  CAS  Google Scholar 

  18. Barzu T, Molho P, Tobelem G, et al. Binding and endocytosis of heparin by human endothelial cells in culture. Biochim Biophys Acta. 1985;845:196–203.

    Article  PubMed  CAS  Google Scholar 

  19. Sobel M, McNeill PM, Carlson PL, et al. Heparin inhibition of von Willebrand factordependent platelet function in vitro and in vivo. J Clin Invest. 1991;87:1787–93.

    Article  PubMed  CAS  Google Scholar 

  20. Friedman Y, Arsenis C. Studies on the heparin sulphamidase activity from rat spleen. Intracellular distribution and characterization of the enzyme. Biochem J. 1974;139:699–708.

    PubMed  CAS  Google Scholar 

  21. Dawes J, Papper DS. Catabolism of low-dose heparin in man. Thromb Res. 1979;14:845–60.

    Article  PubMed  CAS  Google Scholar 

  22. de Swart CA, Nijmeyer B, Roelofs JM, et al. Kinetics of intravenously administered heparin in normal humans. Blood. 1982;60:1251–8.

    PubMed  Google Scholar 

  23. Olsson P, Lagergren H, Ek S. The elimination from plasma of intravenous heparin. An experimental study on dogs and humans. Acta Med Scand. 1963;173:619–30.

    Article  PubMed  CAS  Google Scholar 

  24. Bjornsson TD, Wolfram KM, Kitchell BB. Heparin kinetics determined by three assay methods. Clin Pharmacol Ther. 1982;31:104–13.

    Article  PubMed  CAS  Google Scholar 

  25. Theroux P, Ouimet H, McCans J, et al. Aspirin, heparin, or both to treat acute unstable angina. N Engl J Med. 1988;319:1105–11.

    Article  PubMed  CAS  Google Scholar 

  26. Granger CB, Miller JM, Bovill EG, et al. Rebound increase in thrombin generation and activity after cessation of intravenous heparin in patients with acute coronary syndromes. Circulation. 1995;91:1929–35.

    Article  PubMed  CAS  Google Scholar 

  27. Theroux P, Waters D, Lam J, et al. Reactivation of unstable angina after the discontinuation of heparin. N Engl J Med. 1992;327:141–5.

    Article  PubMed  CAS  Google Scholar 

  28. Heiden D, Mielke Jr CH, Rodvien R. Impairment by heparin of primary haemostasis and platelet [14C]5-hydroxytryptamine release. Br J Haematol. 1977;36:427–36.

    Article  PubMed  CAS  Google Scholar 

  29. Eika C. Inhibition of thrombin-induced aggregation of human platelets by heparin and antithrombin 3. Scand J Haematol. 1971;8:250–6.

    Article  PubMed  CAS  Google Scholar 

  30. Kelton JG, Hirsh J. Bleeding associated with antithrombotic therapy. Semin Hematol. 1980;17:259–91.

    PubMed  CAS  Google Scholar 

  31. Blajchman MA, Young E, Ofosu FA. Effects of unfractionated heparin, dermatan sulfate and low molecular weight heparin on vessel wall permeability in rabbits. Ann N Y Acad Sci. 1989;556:245–54.

    Article  PubMed  CAS  Google Scholar 

  32. Clowes AW, Karnowsky MJ. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature. 1977;265:625–6.

    Article  PubMed  CAS  Google Scholar 

  33. Castellot Jr JJ, Favreau LV, Karnovsky MJ, et al. Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin. Possible role of a platelet endoglycosidase. J Biol Chem. 1982;257:11256–60.

    PubMed  CAS  Google Scholar 

  34. Shaughnessy SG, Young E, Deschamps P, et al. The effects of low molecular weight and standard heparin on calcium loss from fetal rat calvaria. Blood. 1995;86:1368–73.

    PubMed  CAS  Google Scholar 

  35. Bhandari M, Hirsh J, Weitz JI, et al. The effects of standard and low molecular weight heparin on bone nodule formation in vitro. Thromb Haemost. 1998;80:413–7.

    PubMed  CAS  Google Scholar 

  36. Visentin GP, Ford SE, Scott JP, et al. Antibodies from patients with heparin-induced thrombocytopenia/thrombosis are specific for platelet factor 4 complexed with heparin or bound to endothelial cells. J Clin Invest. 1994;93:81–8.

    Article  PubMed  CAS  Google Scholar 

  37. Greinacher A, Liebenhoff U, Kiefel V, et al. Heparin-associated thrombocytopenia: the effects of various intravenous IgG preparations on antibody mediated platelet activation -a possible new indication for high dose i.v. IgG. Thromb Haemost. 1994;71:641–5.

    PubMed  CAS  Google Scholar 

  38. Whitfield LR, Lele AS, Levy G. Effect of pregnancy on the relationship between concentration and anticoagulant action of heparin. Clin Pharmacol Ther. 1983;34:23–8.

    Article  PubMed  CAS  Google Scholar 

  39. Edson JR, Krivit W, White JG. Kaolin partial thromboplastin time: high levels of procoagulants producing short clotting times or masking deficiencies of other procoagulants or low concentrations of anticoagulants. J Lab Clin Med. 1967;70:463–70.

    PubMed  CAS  Google Scholar 

  40. Jneid H, Anderson JL, Wright RS, et al. 2012 ACCF/AHA focused update of the guideline for the management of patients with unstable angina/Non-ST-elevation myocardial infarction (updating the 2007 guideline and replacing the 2011 focused update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2012;126:875–910.

    Article  PubMed  Google Scholar 

  41. Hamm CW, Bassand JP, Agewall S, et al. 2011 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart. 2011;J32:2999–3054.

    Google Scholar 

  42. Telford AM, Wilson C. Trial of heparin versus atenolol in prevention of myocardial infarction in intermediate coronary syndrome. Lancet. 1981;1:1225–8.

    Article  PubMed  CAS  Google Scholar 

  43. Williams DO, Kirby MG, McPherson K, et al. Anticoagulant treatment of unstable angina. Br J Clin Pract. 1986;40:114–6.

    PubMed  CAS  Google Scholar 

  44. Theroux P, Waters D, Qiu S, et al. Aspirin versus heparin to prevent myocardial infarction during the acute phase of unstable angina. Circulation. 1993;88:2045–8.

    Article  PubMed  CAS  Google Scholar 

  45. Neri Serneri GG, Gensini GF, Poggesi L, et al. Effect of heparin, aspirin, or alteplase in reduction of myocardial ischaemia in refractory unstable angina. Lancet. 1990;335:615–8.

    Article  PubMed  CAS  Google Scholar 

  46. Holdright D, Patel D, Cunningham D, et al. Comparison of the effect of heparin and aspirin versus aspirin alone on transient myocardial ischemia and in-hospital prognosis in patients with unstable angina. J Am Coll Cardiol. 1994;24:39–45.

    Article  PubMed  CAS  Google Scholar 

  47. Cohen M, Adams PC, Hawkins L, et al. Usefulness of antithrombotic therapy in resting angina pectoris or non-Q-wave myocardial infarction in preventing death and myocardial infarction (a pilot study from the Antithrombotic Therapy in Acute Coronary Syndromes Study Group). Am J Cardiol. 1990;66:1287–92.

    Article  PubMed  CAS  Google Scholar 

  48. Oler A, Whooley MA, Oler J, et al. Adding heparin to aspirin reduces the incidence of myocardial infarction and death in patients with unstable angina. A meta-analysis. JAMA. 1996;276:811–5.

    Article  PubMed  CAS  Google Scholar 

  49. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:e362–425.

    Article  PubMed  Google Scholar 

  50. Steg PG, James SK, Atar D, Badano LP, et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). Eur Heart J. 2012;33:2569–619.

    Article  PubMed  CAS  Google Scholar 

  51. Antman EM, Morrow DA, McCabe CH, et al. Enoxaparin versus unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction. N Engl J Med. 2006;354:1477–88.

    Article  PubMed  CAS  Google Scholar 

  52. Hirsh J, Warkentin TE, Raschke R, et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest. 1998;114:489S–510.

    Article  PubMed  CAS  Google Scholar 

  53. Hochman JS, Wali AU, Gavrila D, et al. A new regimen for heparin use in acute coronary syndromes. Am Heart J. 1999;138:313–8.

    Article  PubMed  CAS  Google Scholar 

  54. Morabia A. Heparin doses and major bleedings. Lancet. 1986;1:1278–9.

    Article  PubMed  CAS  Google Scholar 

  55. Antman EM. Hirudin in acute myocardial infarction. Safety report from the Thrombolysis and Thrombin Inhibition in Myocardial Infarction (TIMI) 9A Trial. Circulation. 1994;90:1624–30.

    Article  PubMed  CAS  Google Scholar 

  56. Warkentin TE, Levine MN, Hirsh J, et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med. 1995;332:1330–5.

    Article  PubMed  CAS  Google Scholar 

  57. Antman EM. Hirudin in acute myocardial infarction. Thrombolysis and Thrombin Inhibition in Myocardial Infarction (TIMI) 9B trial. Circulation. 1996;94:911–21.

    Article  PubMed  CAS  Google Scholar 

  58. The Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO) IIa Investigators. Randomized trial of intravenous heparin versus recombinant hirudin for acute coronary syndromes. Circulation. 1994;90:1631–7.

    Article  Google Scholar 

  59. The Global Use of Strategies to Open Occluded Coronary Arteries (GUSTO) IIb Investigators. A comparison of recombinant hirudin with heparin for the treatment of acute coronary syndromes. N Engl J Med. 1996;335:775–82.

    Article  Google Scholar 

  60. The EPIC Investigators. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med. 1994;330:956–61.

    Article  Google Scholar 

  61. Arepally GM, Ortel TL. Clinical practice. Heparin-induced thrombocytopenia. N Engl J Med. 2006;355:809–17.

    Article  PubMed  CAS  Google Scholar 

  62. Baroletti SA, Goldhaber SZ. Heparin-induced thrombocytopenia. Circulation. 2006;114:e355–6.

    Article  PubMed  Google Scholar 

  63. Caplan SN, Berkman EM. Protamine sulfate and fish allergy. N Engl J Med. 1976;295:172.

    PubMed  CAS  Google Scholar 

  64. Stewart WJ, McSweeney SM, Kellett MA, et al. Increased risk of severe protamine reactions in NPH insulin-dependent diabetics undergoing cardiac catheterization. Circulation. 1984;70:788–92.

    Article  PubMed  CAS  Google Scholar 

  65. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58:e44–122.

    Article  PubMed  Google Scholar 

  66. Hirsh J, Anand SS, Halperin JL, et al. Mechanism of action and pharmacology of unfractionated heparin. Arterioscler Thromb Vasc Biol. 2001;21:1094–6.

    Article  PubMed  CAS  Google Scholar 

  67. Handeland GF, Abildgaard U, Holm HA, et al. Dose adjusted heparin treatment of deep venous thrombosis: a comparison of unfractionated and low molecular weight heparin. Eur J Clin Pharmacol. 1990;39:107–12.

    Article  PubMed  CAS  Google Scholar 

  68. Hirsh J, Levine MN. Low molecular weight heparin. Blood. 1992;79:1–17.

    PubMed  CAS  Google Scholar 

  69. Weitz JI. Low-molecular-weight heparins. N Engl J Med. 1997;337:688–98.

    Article  PubMed  CAS  Google Scholar 

  70. Boneu B, Caranobe C, Cadroy Y, et al. Pharmacokinetic studies of standard unfractionated heparin, and low molecular weight heparins in the rabbit. Semin Thromb Hemost. 1988;14:18–27.

    Article  PubMed  CAS  Google Scholar 

  71. Brophy DF, Wazny LD, Gehr TW, et al. The pharmacokinetics of subcutaneous enoxaparin in end-stage renal disease. Pharmacotherapy. 2001;21:169–74.

    Article  PubMed  CAS  Google Scholar 

  72. Becker RC, Spencer FA, Gibson M, et al. Influence of patient characteristics and renal function on factor Xa inhibition pharmacokinetics and pharmacodynamics after enoxaparin administration in non-ST-segment elevation acute coronary syndromes. Am Heart J. 2002;143:753–9.

    Article  PubMed  CAS  Google Scholar 

  73. Samama MM, Poller L. Contemporary laboratory monitoring of low molecular weight heparins. Clin Lab Med. 1995;15:119–23.

    PubMed  CAS  Google Scholar 

  74. Boneu B, de Moerloose P. How and when to monitor a patient treated with ow molecular weight heparin. Semin Thromb Hemost. 2001;27:519–22.

    Article  PubMed  CAS  Google Scholar 

  75. Johnson EA, Kirkwood TB, Stirling Y, et al. Brozovic M. Four heparin preparations: anti-Xa potentiating effect of heparin after subcutaneous injection. Thromb Haemost. 1976;35:586–91.

    PubMed  CAS  Google Scholar 

  76. Choay J, Petitou M, Lormeau JC, et al. Structure-activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Commun. 1983;116:492–9.

    Article  PubMed  CAS  Google Scholar 

  77. Bara L, Samama M. Pharmacokinetics of low molecular weight heparins. Acta Chir Scand Suppl. 1988;543:65–72.

    PubMed  CAS  Google Scholar 

  78. Bradbrook ID, Magnani HN, Moelker HC, et al. ORG 10172: a low molecular weight heparinoid anticoagulant with a long half-life in man. Br J Clin Pharmacol. 1987;23:667–75.

    Article  PubMed  CAS  Google Scholar 

  79. Antman EM, Cohen M, Radley D, et al. Assessment of the treatment effect of enoxaparin for unstable angina/non-Q-wave myocardial infarction. TIMI 11B-ESSENCE meta-analysis. Circulation. 1999;100:1602–8.

    Article  PubMed  CAS  Google Scholar 

  80. The Thrombolysis in Myocardial Infarction (TIMI) 11A Trial Investigators. Dose-ranging trial of enoxaparin for unstable angina: results of TIMI 11A. J Am Coll Cardiol. 1997;29:1474–82.

    Article  Google Scholar 

  81. Bruno R, Baille P, Retout S, et al. Population pharmacokinetics and pharmacodynamics of enoxaparin in unstable angina and non-ST-segment elevation myocardial infarction. Br J Clin Pharmacol. 2003;56:407–14.

    Article  PubMed  CAS  Google Scholar 

  82. Warkentin TE, Roberts RS, Hirsh J, et al. An improved definition of immune heparininduced thrombocytopenia in postoperative orthopedic patients. Arch Intern Med. 2003;163:2518–24.

    Article  PubMed  Google Scholar 

  83. Greinacher A, Michels I, Mueller-Eckhardt C. Heparin-associated thrombocytopenia: the antibody is not heparin specific. Thromb Haemost. 1992;67:545–9.

    PubMed  CAS  Google Scholar 

  84. Monreal M, Vinas L, Monreal L, et al. Heparin-related osteoporosis in rats. A comparative study between unfractioned heparin and a low-molecular-weight heparin. Haemostasis. 1990;20:204–7.

    PubMed  CAS  Google Scholar 

  85. Racanelli A, Fareed J, Walenga JM, et al. Biochemical and pharmacologic studies on the protamine interactions with heparin, its fractions and fragments. Semin Thromb Hemost. 1985;11:176–89.

    Article  PubMed  CAS  Google Scholar 

  86. Wong GC, Giugliano RP, Antman EM. Use of low-molecular-weight heparins in the management of acute coronary artery syndromes and percutaneous coronary intervention. JAMA. 2003;289:331–42.

    Article  PubMed  CAS  Google Scholar 

  87. Klein W, Buchwald A, Hillis SE, et al. Comparison of low-molecular-weight heparin with unfractionated heparin acutely and with placebo for 6 weeks in the management of unstable coronary artery disease. Fragmin in unstable coronary artery disease study (FRIC). Circulation. 1997;96:61–8.

    Article  PubMed  CAS  Google Scholar 

  88. Fragmin During Instability in Coronary Artery Disease (FRISC) Study Group. Low-molecular-weight heparin during instability in coronary artery disease. Lancet. 1996;347:561–8.

    Google Scholar 

  89. FRAX.I.S. (FRAxiparine in Ischaemic Syndrome) Investigators. Comparison of two treatment durations (6 days and 14 days) of a low molecular weight heparin with a 6-day treatment of unfractionated heparin in the initial management of unstable angina or non-Q wave myocardial infarction. Eur Heart J. 1999;20:1553–62.

    Article  Google Scholar 

  90. Ferguson JJ, Califf RM, Antman EM, et al. Enoxaparin vs. unfractionated heparin in high-risk patients with non-ST-segment elevation acute coronary syndromes managed with an intended early invasive strategy: primary results of the SYNERGY randomized trial. JAMA. 2004;292:45–54.

    Article  PubMed  CAS  Google Scholar 

  91. Cohen M, Demers C, Gurfinkel E, et al. A comparison of low-molecular-weight heparin with unfractionated heparin for unstable coronary artery disease. N Engl J Med. 1997;337:447–52.

    Article  PubMed  CAS  Google Scholar 

  92. Antman EM, McCabe CH, Gurfinkel EP, et al. Enoxaparin prevents death and cardiac ischemic events in unstable angina/non-Q-wave myocardial infarction. Results of the thrombolysis in myocardial infarction (TIMI) 11B trial. Circulation. 1999;100:1593–601.

    Article  PubMed  CAS  Google Scholar 

  93. Cohen M, Theroux P, Borzak S, et al. Randomized double-blind safety study of enoxaparin versus unfractionated heparin in patients with non-ST-segment elevation acute coronary syndromes treated with tirofiban and aspirin: the ACUTE II study. The Antithrombotic Combination Using Tirofiban and Enoxaparin. Am Heart J. 2002;144:470–7.

    Article  PubMed  CAS  Google Scholar 

  94. Goodman SG, Fitchett D, Armstrong PW, et al. Randomized evaluation of the safety and efficacy of enoxaparin versus unfractionated heparin in high-risk patients with non-ST-segment elevation acute coronary syndromes receiving the glycoprotein IIb/IIIa inhibitor eptifibatide. Circulation. 2003;107:238–44.

    Article  PubMed  CAS  Google Scholar 

  95. Blazing MA, de Lemos JA, White HD, et al. Safety and efficacy of enoxaparin vs. unfractionated heparin in patients with non-ST-segment elevation acute coronary syndromes who receive tirofiban and aspirin: a randomized controlled trial. JAMA. 2004;292:55–64.

    Article  PubMed  CAS  Google Scholar 

  96. Antman EM. The search for replacements for unfractionated heparin. Circulation. 2001;103:2310–4.

    Article  PubMed  CAS  Google Scholar 

  97. Petersen JL, Mahaffey KW, Hasselblad V, et al. Efficacy and bleeding complications among patients randomized to enoxaparin or unfractionated heparin for antithrombins therapy in non-ST-Segment elevation acute coronary syndromes: a systematic overview. JAMA. 2004;292:89–96.

    Article  PubMed  CAS  Google Scholar 

  98. The ASSENT‐3 Investigators. Efficacy and safety of tenecteplase in combination with enoxaparin, abciximab, or unfractionated heparin: the ASSENT‐3 randomised trial in acute myocardial infarction. Lancet. 2001;358:605–13.

    Article  Google Scholar 

  99. Wallentin L, Goldstein P, Armstrong PW, et al. Efficacy and safety of tenecteplase in combination with the low-molecular-weight heparin enoxaparin or unfractionated heparin in the prehospital setting: the Assessment of the Safety and Efficacy of a New Thrombolytic Regimen (ASSENT)-3 PLUS randomized trial in acute myocardial infarction. Circulation. 2003;108:135–42.

    Article  PubMed  CAS  Google Scholar 

  100. Giraldez RR, Nicolau JC, Corbalan R, et al. Enoxaparin is superior to unfractionated heparin in patients with ST elevation myocardial infarction undergoing fibrinolysis regardless of the choice of lytic: an ExTRACT-TIMI 25 analysis. Eur Heart J. 2007;28:1566–73.

    Article  PubMed  CAS  Google Scholar 

  101. White HD, Braunwald E, Murphy SA, et al. Enoxaparin vs. unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction in elderly and younger patients: results from ExTRACT-TIMI 25. Eur Heart J. 2007;28:1066–71.

    Article  PubMed  CAS  Google Scholar 

  102. Montalescot G, White HD, Gallo R, et al. STEEPLE Investigators. Enoxaparin versus unfractionated heparin in elective percutaneous coronary intervention. N Engl J Med. 2006;355:1058–60.

    Google Scholar 

  103. Antman EM, Louwerenburg HW, Baars HF, et al. Enoxaparin as adjunctive antithrombin therapy for ST-elevation myocardial infarction: results of the ENTIRE-Thrombolysis in Myocardial Infarction (TIMI) 23 Trial. Circulation 105:1642–9. Erratum in. Circulation. 2002;105:2799.

    Article  CAS  Google Scholar 

  104. Gibson CM, Murphy SA, Montalescot G, et al. Percutaneous coronary intervention in patients receiving enoxaparin or unfractionated heparin after fibrinolytic therapy for ST-segment elevation myocardial infarction in the ExTRACT-TIMI 25 trial. J Am Coll Cardiol. 2007;49:2238–46.

    Article  PubMed  CAS  Google Scholar 

  105. Levine MN, Raskob G, Beyth RJ, et al. Hemorrhagic complications of anticoagulant treatment: The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004;126:287S–310.

    Article  PubMed  CAS  Google Scholar 

  106. Eisert WG, Hauel N, Stangier J, et al. Dabigatran: an oral novel potent reversible nonpeptide inhibitor of thrombin. Arterioscler Thromb Vasc Biol. 2010;30:1885–9.

    Article  PubMed  CAS  Google Scholar 

  107. Weitz JI. Factor Xa and thrombin as targets for new oral anticoagulants. Thromb Res. 2011;127:S5–12.

    Article  PubMed  CAS  Google Scholar 

  108. Bates SM, Weitz JI. Direct thrombin inhibitors for treatment of arterial thrombosis: potential differences between bivalirudin and hirudin. Am J Cardiol. 1998;82:12P–8.

    Article  PubMed  CAS  Google Scholar 

  109. Xiao Z, Theroux P. Platelet activation with unfractionated heparin at therapeutic concentrations and comparisons with a low-molecular-weight heparin and with a direct thrombin inhibitor. Circulation. 1998;97:251–6.

    Article  PubMed  CAS  Google Scholar 

  110. Sorensen B, Ingerslev J. A direct thrombin inhibitor studied by dynamic whole blood clot formation. Haemostatic response to ex-vivo addition of recombinant factor VIIa or activated prothrombin complex concentrate. Thromb Haemost. 2006;96:446–53.

    PubMed  Google Scholar 

  111. Wallis RB. Hirudins: from leeches to man. Semin Thromb Hemost. 1996;22:185–96.

    Article  PubMed  CAS  Google Scholar 

  112. OASIS-2 Investigators. Effects of recombinant hirudin (lepirudin) compared with heparin on death, myocardial infarction, refractory angina, and revascularisation procedures in patients with acute myocardial ischaemia without ST elevation: A randomised trial. Lancet. 1999;353:429–38.

    Article  Google Scholar 

  113. Garcia DA, Baglin TP, Weitz JI, et al. Parenteral anticoagulants: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e24S–43.

    Article  PubMed  CAS  Google Scholar 

  114. Lefevre G, Duval M, Gauron S, et al. Effect of renal impairment on the pharmacokinetics and pharmacodynamics of desirudin. Clin Pharmacol Ther. 1997;62:50–9.

    Article  PubMed  CAS  Google Scholar 

  115. Banner DW, Hadvary P. Inhibitor binding to thrombin: x-ray crystallographic studies. Adv Exp Med Biol. 1993;340:27–33.

    Article  PubMed  CAS  Google Scholar 

  116. Hursting MJ, Alford KL, Becker JC, et al. Novastan (brand of argatroban): a small molecule, direct thrombin inhibitor. Semin Thromb Hemost. 1997;23:503–16.

    Article  PubMed  CAS  Google Scholar 

  117. Lewis BE, Wallis DE, Leya F, et al. Argatroban-915 Investigators. Argatroban anticoagulation in patients with heparin-induced thrombocytopenia. Arch Intern Med. 2003;163:1849–56.

    Article  PubMed  CAS  Google Scholar 

  118. Swan SK, Hursting MJ. The pharmacokinetics and pharmacodynamics of argatroban: effects of age, gender, and hepatic or renal dysfunction. Pharmacotherapy. 2000;20:318–29.

    Article  PubMed  CAS  Google Scholar 

  119. Maraganore JM, Bourdon P, Jablonski J, et al. Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin. Biochemistry. 1990;29:7095–101.

    Article  PubMed  CAS  Google Scholar 

  120. Skrzypczak-Jankun E, Carperos VE, Ravichandran KG, et al. Structure of the hirugen and hirulog 1 complexes of alpha-thrombin. J Mol Biol. 1991;221:1379–93.

    PubMed  CAS  Google Scholar 

  121. Witting JI, Bourdon P, Brezniak DV, et al. Thrombinspecific inhibition by and slow cleavage of hirulog-1. Biochem J. 1992;283:737–43.

    PubMed  CAS  Google Scholar 

  122. Fox I, Dawson A, Loynds P, et al. Anticoagulant activity of Hirulog, a direct thrombin inhibitor, in humans. Thromb Haemost. 1993;69:157–63.

    PubMed  CAS  Google Scholar 

  123. Robson R, White H, Aylward P, et al. Bivalirudin pharmacokinetics and pharmacodynamics: effect of renal function, dose, and gender. Clin Pharmacol Ther. 2002;71:433–9.

    Article  PubMed  CAS  Google Scholar 

  124. Chew DP, Bhatt DL, Kimball W, et al. Bivalirudin provides increasing benefit with decreasing renal function: a meta-analysis of randomized trials. Am J Cardiol. 2003;92:919–23.

    Article  PubMed  CAS  Google Scholar 

  125. Stone G, McLaurin BT, Cox DA, et al. ACUITY Investigators. Bivalirudin for patients with acute coronary syndromes. N Engl J Med. 2006;355:2203–16.

    Google Scholar 

  126. Kastrati A, Neumann FJ, Schulz S, et al. Abciximab and heparin versus bivalirudin for non-ST-elevation myocardial infarction. ISAR REACT 4 trial. New Engl J Med. 2011;365:1980–9.

    Article  PubMed  Google Scholar 

  127. Stone GW, Witzenbichler B, Guagliumi G, et al. Bivalirudin during primary PCI in acute myocardial infarction. N Engl J Med. 2008;358:2218–30.

    Article  PubMed  CAS  Google Scholar 

  128. Wasowicz M, Vegas A, Borger MA, et al. Bivalirudin anticoagulation for cardiopulmonary bypass in a patient with heparin-induced thrombocytopenia. Can J Anaesth. 2005;52:1093–8.

    Article  PubMed  Google Scholar 

  129. Mahaffey KW, Lewis BE, Wildermann NM, et al. The anticoagulant therapy with bivalirudin to assist in the performance of percutaneous coronary intervention in patients with heparin-induced thrombocytopenia (ATBAT) study: main results. J Invasive Cardiol. 2003;15:611–6.

    PubMed  Google Scholar 

  130. Lincoff AM, Bittl JA, Harrington RA, et al. Bivalirudin and provisional glycoprotein IIb/IIIa blockade compared with heparin and planned glycoprotein IIb/IIIa blockade during percutaneous coronary intervention: REPLACE-2 randomized trial. JAMA. 2003;289:853–63.

    Article  PubMed  CAS  Google Scholar 

  131. Mehran R, Lansky AJ, Witzenbichler B, et al. Bivalirudin in patients undergoing primary angioplasty for acute myocardial infarction (HORIZONS-AMI): 1-year results of a randomised controlled trial. Lancet. 2009;374:1149–59.

    Article  PubMed  Google Scholar 

  132. Stone GW, Witzenbichler B, Guagliumi G, et al. Heparin plus a glycoprotein IIb/IIIa inhibitor versus bivalirudin monotherapy and paclitaxel-eluting stents versus bare-metal stents in acute myocardial infarction (HORIZONS-AMI): final 3-year results from a multicentre, randomised controlled trial. Lancet. 2011;377:2193–204.

    Article  PubMed  CAS  Google Scholar 

  133. Dangas GD, Claessen BE, Mehran R, Brener S, et al. Clinical outcomes following stent thrombosis occurring in-hospital versus out-of-hospital: results from the HORIZONS-AMI (Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction) trial. J Am Coll Cardiol. 2012;59:1752–9.

    Article  PubMed  Google Scholar 

  134. Dangas G, Mehran R, Guagliumi G, et al. Role of clopidogrel loading dose in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty: results from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trial. J Am Coll Cardiol. 2009;54:1438–46.

    Article  PubMed  CAS  Google Scholar 

  135. Boneu B, Necciari J, Cariou R, et al. Pharmacokinetics and tolerance of the natural pentasaccharide (SR90107/Org31540) with high affinity to antithrombin III in man. Thromb Haemost. 1995;74:1468–73.

    PubMed  CAS  Google Scholar 

  136. Donat F, Duret JP, Santoni A, et al. The pharmacokinetics of fondaparinux sodium in healthy volunteers. Clin Pharmacokinet. 2002;41:1–9.

    Article  PubMed  CAS  Google Scholar 

  137. Lieu C, Shi J, Donat F, et al. Fondaparinux sodium is not metabolised in mammalian liver fractions and does not inhibit cytochrome P450-mediated metabolism of concomitant drugs. Clin Pharmacokinet. 2002;41:19–26.

    Article  PubMed  CAS  Google Scholar 

  138. Bassand JP, Hamm CW, Ardissino D, et al. Guidelines for the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes. Eur Heart J. 2007;28:1598–660.

    Article  PubMed  CAS  Google Scholar 

  139. Paolucci F, Clavies MC, Donat F, et al. Fondaparinux sodium mechanism of action: identification of specific binding to purified and human plasma-derived proteins. Clin Pharmacokinet. 2002;41:11–8.

    Article  PubMed  CAS  Google Scholar 

  140. Savi P, Chong BH, Greinacher A, et al. Effect of fondaparinux on platelet activation in the presence of heparin-dependent antibodies: a blinded comparative multicenter study with unfractionated heparin. Blood. 2005;105:139–44.

    Article  PubMed  CAS  Google Scholar 

  141. Kuo KH, Kovacs MJ. Fondaparinux: a potential new therapy for HIT. Hematology. 2005;10:271–5.

    Article  PubMed  CAS  Google Scholar 

  142. Parody R, Oliver A, Souto JC, et al. Fondaparinux (ARIXTRA) as an alternative antithrombotic prophylaxis when there is hypersensitivity to low molecular weight and unfractionated heparins. Haematologica. 2003;88:ECR32.

    PubMed  Google Scholar 

  143. Matziolis G, Perka C, Disch A, et al. Effects of fondaparinux compared with dalteparin, enoxaparin and unfractionated heparin on human osteoblasts. Calcif Tissue Int. 2003;73:370–9.

    Article  PubMed  CAS  Google Scholar 

  144. Lagrange F, Vergnes C, Brun JL, et al. Absence of placental transfer of pentasaccharide (Fondaparinux, Arixtra) in the dually perfused human cotyledon in vitro. Thromb Haemost. 2002;87:831–5.

    PubMed  CAS  Google Scholar 

  145. Simoons ML, Bobbink IW, Boland J, et al. A dose-finding study of fondaparinux in patients with non-ST-segment elevation acute coronary syndromes: the Pentasaccharide in Unstable Angina (PENTUA) Study. J Am Coll Cardiol. 2004;43:2183–90.

    Article  PubMed  CAS  Google Scholar 

  146. Bijsterveld NR, Moons AH, Boekholdt SM, et al. Ability of recombinant factor VIIa to reverse the anticoagulant effect of the pentasaccharide fondaparinux in healthy volunteers. Circulation. 2002;106:2550–4.

    Article  PubMed  CAS  Google Scholar 

  147. Yusuf S, Mehta SR, Chrolavicius S, et al. Comparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med. 2006;354:1464–76.

    Article  PubMed  CAS  Google Scholar 

  148. Steg PG, Mehta S, Jolly S, et al. Fondaparinux with UnfracTionated heparin dUring Revascularization in Acute coronary syndromes (FUTURA/OASIS 8): a randomized trial of intravenous unfractionated heparin during percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndromes initially treated with fondaparinux. Am Heart J. 2010;160:1029–34.

    Article  PubMed  Google Scholar 

  149. Yusuf S, Mehta SR, Chrolavicius S, et al. Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: the OASIS-6 randomized trial. JAMA. 2006;295:1519–30.

    Article  PubMed  CAS  Google Scholar 

  150. Hinder M, Frick A, Jordaan P, et al. Direct and rapid inhibition of factor Xa by otamixaban: a pharmacokinetic and pharmacodynamic investigation in patients with coronary artery disease. Clin Pharmacol Ther. 2006;80:691–702.

    Article  PubMed  CAS  Google Scholar 

  151. Cohen M, Bhatt DL, Alexander JH, et al. Randomized, double-blind, dose-ranging study of otamixaban, a novel, parenteral, short-acting direct factor Xa inhibitor, in percutaneous coronary intervention: the SEPIA-PCI trial. Circulation. 2007;115:2642–51.

    Article  PubMed  CAS  Google Scholar 

  152. Sabatine MS, Antman EM, Widimsky P, et al. Otamixaban for the treatment of patients with non-ST-elevation acute coronary syndromes (SEPIA-ACS1 TIMI 42): a randomised, double-blind, active-controlled, phase 2 trial. Lancet. 2009;374:787–95.

    Article  PubMed  CAS  Google Scholar 

  153. Steg PG, Mehta SR, Pollack Jr CV, et al. Design and rationale of the treatment of acute coronary syndromes with otamixaban trial: a double-blind triple-dummy 2-stage randomized trial comparing otamixaban to unfractionated heparin and eptifibatide in non-ST-segment elevation acute coronary syndromes with a planned early invasive strategy. Am Heart J. 2012;164:817–24.

    Article  PubMed  CAS  Google Scholar 

  154. Angiolillo DJ, Ueno M, Goto S. Basic principles of platelet biology and clinical implications. Circ J. 2010;74:597–607.

    Article  PubMed  CAS  Google Scholar 

  155. Eikelboom JW, Weitz JI, Budaj A, et al. Clopidogrel does not suppress blood markers of coagulation activation in aspirin-treated patients with non-ST-elevation acute coronary syndromes. Eur Heart J. 2002;23:1771–9.

    Article  PubMed  CAS  Google Scholar 

  156. Hurlen M, Abdelnoor M, Smith P, et al. Warfarin, aspirin, or both after myocardial infarction. N Engl J Med. 2002;347:969–74.

    Article  PubMed  CAS  Google Scholar 

  157. Herlitz J, Holm J, Peterson M, et al. Effect of fixed low-dose warfarin added to aspirin in the long term after acute myocardial infarction: the LoWASA Study. Eur Heart J. 2004;25:232–9.

    Article  PubMed  CAS  Google Scholar 

  158. Orford JL, Fasseas P, Melby S, et al. Safety and efficacy of aspirin, clopidogrel, and warfarin after coronary stent placement in patients with an indication for anticoagulation. Am Heart J. 2004;1473:463–7.

    Article  CAS  Google Scholar 

  159. Karjalainen PP, Porela P, Ylitalo A, et al. Safety and efficacy of combined antiplatelet-warfarin therapy after coronary stenting. Eur Heart J. 2007;286:726–32.

    Article  CAS  Google Scholar 

  160. Khurram Z, Chou E, Minutello R, et al. Combination therapy with aspirin, clopidogrel and warfarin following coronary stenting is associated with a significant risk of bleeding. J Invasive Cardiol. 2006;184:162–4.

    Google Scholar 

  161. Becker RC. Antithrombotic therapy after myocardial infarction. N Engl J Med. 2002;347:1019–22.

    Article  PubMed  Google Scholar 

  162. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139–51.

    Article  PubMed  CAS  Google Scholar 

  163. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883–9.

    Article  PubMed  CAS  Google Scholar 

  164. Connolly SJ, Eikelboom J, Joyner C, et al. Apixaban in patients with atrial fibrillation. N Engl J Med. 2011;364:806–17.

    Article  PubMed  CAS  Google Scholar 

  165. Stangier J, Rathgen K, Stähle H, et al. Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate: an open-label, parallel-group, single-centre study. Clin Pharmacokinet. 2010;49:259–68.

    Article  PubMed  CAS  Google Scholar 

  166. Schulman S, Crowther MA. How I treat with anticoagulants in 2012: new and old anticoagulants, and when and how to switch. Blood. 2012;119:3016–23.

    Article  PubMed  CAS  Google Scholar 

  167. Spyropoulos AC, Douketis JD. How I treat anticoagulated patients undergoing an elective procedure or surgery. Blood. 2012;120:2954–62.

    Article  PubMed  CAS  Google Scholar 

  168. Wallentin L, Wilcox RG, Weaver WD, et al. ESTEEM Investigators. Oral ximelagatran for secondary prophylaxis after myocardial infarction: the ESTEEM randomised controlled trial. Lancet. 2003;362:789–97.

    Google Scholar 

  169. Sorbera LA, Bozzo J, Castaner J. Dabigatran/dabigatran etexilate. Drugs Fut. 2005;30:877–85.

    Article  CAS  Google Scholar 

  170. Stangier J, Eriksson BI, Dahl OE, et al. Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J Clin Pharmacol. 2005;45:555–63.

    Article  PubMed  CAS  Google Scholar 

  171. Eriksson BI, Dahl OE, Ahnfelt L, et al. Dose escalating safety study of a new oral direct thrombin inhibitor, dabigatran etexilate, in patients undergoing total hip replacement: BISTRO I. J Thromb Haemost. 2004;2:1573–80.

    Article  PubMed  CAS  Google Scholar 

  172. De Caterina R, Husted S, Wallentin L. New oral anticoagulants in atrial fibrillation and acute coronary syndromes: ESC Working Group on Thrombosis-Task Force on Anticoagulants in Heart Disease position paper. J Am Coll Cardiol. 2012;59:1413–25.

    Article  PubMed  CAS  Google Scholar 

  173. Eerenberg ES, Kamphuisen PW, Sijpkens MK, et al. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation. 2011;124:1573–9.

    Article  PubMed  CAS  Google Scholar 

  174. Oldgren J, Budaj A, Granger CB, et al. Dabigatran vs. placebo in patients with acute coronary syndromes on dual antiplatelet therapy: a randomized, double-blind, phase II trial. Eur Heart J. 2011;32:2781–9.

    Article  PubMed  CAS  Google Scholar 

  175. Jiang J, Hu Y, Zhang J, et al. Safety, pharmacokinetics and pharmacodynamics of single doses of rivaroxaban -an oral, direct factor Xa inhibitor- in elderly Chinese subjects. Thromb Haemost. 2010;103:234–41.

    Article  PubMed  CAS  Google Scholar 

  176. Steg PG, Mehta SR, Jukema JW, et al. RUBY-1: a randomized, double-blind, placebo-controlled trial of the safety and tolerability of the novel oral factor Xa inhibitor darexaban (YM150) following acute coronary syndrome. Eur Heart J. 2011;32:2541–54.

    Article  PubMed  CAS  Google Scholar 

  177. Alexander JH, Becker RC, Bhatt DL, et al. Apixaban, an oral, direct, selective factor Xa inhibitor, in combination with antiplatelet therapy after acute coronary syndrome: results of the Apixaban for Prevention of Acute Ischemic and Safety Events (APPRAISE) trial. Circulation. 2009;119:2877–85.

    Article  PubMed  CAS  Google Scholar 

  178. Alexander JH, Lopes RD, James S, et al. The APPRAISE 2 Investigators. Apixaban with antiplatelet therapy after acute coronary syndrome. N Engl J Med. 2011;365:699–708.

    Google Scholar 

  179. Mega JL, Braunwald E, Mohanavelu S, et al. Rivaroxaban versus placebo in patients with acute coronary syndromes (ATLAS ACSTIMI 46): a randomised, double-blind, phase II trial. Lancet. 2009;374:29–38.

    Article  PubMed  CAS  Google Scholar 

  180. Gibson CM, Mega JL, Burton P, et al. Rationale and design of the Anti-Xa therapy to lower cardiovascular events in addition to standard therapy in subjects with acute coronary syndrome-thrombolysis in myocardial infarction 51 (ATLAS-ACS 2 TIMI 51) trial: a randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of rivaroxaban in subjects with acute coronary syndrome. Am Heart J. 2011;161:815–21.

    Article  PubMed  CAS  Google Scholar 

  181. Mega JL, Braunwald E, Wiviott SD, et al. Rivaroxaban in patients with a recent acute coronary syndrome. N Engl J Med. 2012;366:9–19.

    Article  PubMed  CAS  Google Scholar 

  182. Becker RC, Rusconi C, Sullenger B. Nucleic acid aptamers in therapeutic anticoagulation. Technology, development, and clinical application. Thromb Haemost. 2005;93:1014–20.

    PubMed  CAS  Google Scholar 

  183. Becker RC, Povsic TJ, Cohen MG, et al. Nucleic acid aptamers as antithrombotic agents: opportunities in extracellular therapeutics. Thromb Haemost. 2010;103:586–95.

    Article  PubMed  CAS  Google Scholar 

  184. Povsic T, Sullenger B, Zelenkofske S, et al. Translating nucleic acid aptamers to antithrombotic drugs in cardiovascular medicine. J Cardiovasc Transl Res. 2011;3:704–16.

    Article  Google Scholar 

  185. Povsic TJ, Cohen MG, Chan MY, et al. Dose selection for a direct and selective factor IXa inhibitor and its complementary reversal agent: translating pharmacokinetic and pharmacodynamic properties of the REG1 system to clinical trial design. J Thromb Thrombolysis. 2011;32:21–31.

    Article  PubMed  CAS  Google Scholar 

  186. Dyke CK, Steinhubl SR, Kleiman NS, et al. First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. Circulation. 2006;114:2490–7.

    Article  PubMed  CAS  Google Scholar 

  187. Chan MY, Cohen MG, Dyke CK, et al. Phase 1b randomized study of antidote-controlled modulation of factor IXa activity in patients with stable coronary artery disease. Circulation. 2008;117:2865–74.

    Article  PubMed  CAS  Google Scholar 

  188. Chan MY, Rusconi CP, Alexander JH, et al. A randomized, repeat-dose, pharmacodynamic and safety study of an antidotecontrolled factor IXa inhibitor. J Thromb Haemost. 2008;6:789–96.

    Article  PubMed  CAS  Google Scholar 

  189. Cohen MG, Purdy DA, Rossi JS, et al. First clinical application of an actively reversible direct factor IXa inhibitor as an anticoagulation strategy in patients undergoing percutaneous intervention. Circulation. 2010;122:614–22.

    Article  PubMed  CAS  Google Scholar 

  190. Povsic TJ, Cohen MG, Mehran R, et al. A randomized, partially-blinded, multicenter, activecontrolled, dose-ranging study assessing the safety, efficacy, and pharmacodynamics of the REG1 anticoagulation system in patients with acute coronary syndromes: design and rationale of the RADAR phase IIb trial. Am Heart J. 2011;161:261–8.

    Article  PubMed  CAS  Google Scholar 

  191. Povsic TJ, Wargin WA, Alexander JH, et al. Pegnivacogin results in near complete FIX inhibition in acute coronary syndrome patients: RADAR pharmacokinetic and pharmacodynamic substudy. Eur Heart J. 2011;32:2412–9.

    Article  PubMed  CAS  Google Scholar 

  192. Esmon CT. Crosstalk between inflammation and thrombosis. Maturitas. 2004;47:305–14.

    Article  PubMed  CAS  Google Scholar 

  193. Coughlin SR. Protease-activated receptors in haemostasis, thrombosis and vascular biology. J Thromb Haemost. 2005;3:1800–14.

    Article  PubMed  CAS  Google Scholar 

  194. Ruf W, Dorfleutner A, Riewald M. Specificity of coagulation factor signalling. J Thromb Haemost. 2003;1:1495–503.

    Article  PubMed  CAS  Google Scholar 

  195. Morrow DA, Braunwald E, Bonaca MP, et al. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med. 2012;366:1404–13.

    Article  PubMed  CAS  Google Scholar 

  196. Tricoci P, Huang Z, Held C, et al. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med. 2012;366:20–33.

    Article  PubMed  CAS  Google Scholar 

  197. Collin N, Assumpção TC, Mizurini DM, et al. Lufaxin, a Novel Factor Xa Inhibitor From the Salivary Gland of the Sand Fly Lutzomyia longipalpis Blocks Protease-Activated Receptor 2 Activation and Inhibits Inflammation and Thrombosis In Vivo. Arterioscler Thromb Vasc Biol. 2012;32:2185–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Ana Muñiz-Lozano is recipient of a training grant from the Spanish Society of Cardiology (“Beca de la Sección de Cardiopatía Isquémica para Formación e Investigación Post Residencia en el Extranjero” – Sociedad Española de Cardiología).

Disclosures

Dominick J. Angiolillo has received payment as an individual for: (a) Consulting fee or honorarium from Bristol Myers Squibb, Sanofi-Aventis, Eli Lilly, Daiichi Sankyo, The Medicines Company, AstraZeneca, Merck, Evolva, Abbott Vascular and PLx Pharma; (b) Participation in review activities from Johnson & Johnson, St. Jude, and Sunovion. Institutional payments for grants from Bristol Myers Squibb, Sanofi-Aventis, Glaxo Smith Kline, Otsuka, Eli Lilly, Daiichi Sankyo, The Medicines Company, AstraZeneca, Evolva; and has other financial relationships with Esther and King Biomedical Research Grant.

Ana Muñiz-Lozano: has no conflict of interest to report.

Fabiana Rollini: has no conflict of interest to report.

Francesco Franchi: has no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominick J. Angiolillo MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Muñiz-Lozano, A., Rollini, F., Franchi, F., Angiolillo, D.J. (2014). Anticoagulation Therapy. Heparins, Factor II and Factor Xa Inhibitors. In: Avanzas, P., Clemmensen, P. (eds) Pharmacological Treatment of Acute Coronary Syndromes. Current Cardiovascular Therapy. Springer, London. https://doi.org/10.1007/978-1-4471-5424-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5424-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5423-5

  • Online ISBN: 978-1-4471-5424-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics