Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 2427 Accesses

Abstract

This chapter starts with some basic definitions and concepts as well as a quick literature review on FDIR academic methods. The main concepts of the industrial state-of-practice for space and avionics systems will also be briefly presented. An attempt will be made to analyze major reasons for the slow-progress in applying advanced model-based techniques to real-world aerospace systems. Fault detection and diagnosis (FDD) is an important aspect of process engineering. The primary objective of an FDD system is early detection of faults, isolation of their location, and diagnosis of their causes, enabling correction of the faults before additional damage to the system or loss of service occurs. Abnormal situations occur when processes deviate significantly (outside the allowed range) from their normal regime during online operation. A fault can be defined as an unpermitted deviation of at least one characteristic property or parameter of the system from the standard condition [1]. A failure is a permanent interruption of a system’s ability to perform a required function under specified operating conditions. Within the academic literature, the terminology is now more or less standardized. Such malfunctions may occur in the individual unit of the plants, sensors, actuators, or other devices and affect adversely the local or global behavior of the system. Process abnormalities are usually classified into additive or multiplicative faults according to the effects on a process. In general, additive faults affect processes as unknown inputs, while multiplicative faults usually have important effects on the process dynamics and can cause unstable behaviors. Abrupt faults are sudden changes in behavior of the system (step like), while incipient faults are gradual and slow drifting faults. Permanent faults lead to the total failure of the equipment (once they occur they do not disappear), transient faults are temporary malfunctioning (appear for a short time and then disappear), and intermittent faults are the repeated occurrences of transient faults (they appear, disappear, and then reappear). Hidden faults are those which are present on standby equipment and visible only when this equipment is activated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, for example, http://www.safeprocess.es.aau.dk/

  2. 2.

    A supersonic passenger airplane jointly developed and produced by Aerospatiale (France) and the British Aircraft Corporation under an Anglo-French treaty (first commercial fly in 1969).

Abbreviations

EFCS:

Electrical Flight Control System

FBW:

Fly-by-Wire

FCC:

Flight Control Computer

FDD:

Fault Detection and Diagnosis

FDI:

Fault Detection and Isolation

FDIR:

Fault Detection, Identification and Recovery

FTC:

Fault-Tolerant Control

FTG:

Fault-Tolerant Guidance

L/D:

Lift-to-Drag Ratio

NEP:

Nominal Exit Point

GNC:

Guidance, Navigation, and Control

HMI:

Human–Machine Interface

LTI:

Linear Time Invariant

LPV:

Linear Parameter Varying

RLV:

Reusable Launch Vehicle

TAEM:

Terminal Area Energy Management

TEP:

TAEM Entry Point

TRL:

Technology Readiness Level

α:

Angle-of-Attack

M:

Mach Number

References

  1. Isermann R (1997) Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng Pract 5(5):709–719

    Article  Google Scholar 

  2. Olive X (2012) FDI(R) for satellites: how to deal with high availability and robustness in the space domain. Int J Appl Math Comput Sci 22(1):99–107. doi: 10.2478/v10006-012-0007-8

    Article  MATH  Google Scholar 

  3. Blanke M, Kinnaert M, Lunze M, Staroswiecki M (2003) Diagnosis and fault tolerant control. Springer, New York

    Book  MATH  Google Scholar 

  4. Ducard GJJ (2009) Fault-tolerant flight control and guidance systems, Advances in industrial control. Springer, London

    Book  MATH  Google Scholar 

  5. Noura H, Theilliol D, Ponsart J-C, Chamseddine A (2009) Fault-tolerant control systems. Design and practical applications, Advances in industrial control. Springer, London

    Book  MATH  Google Scholar 

  6. Osder S (1999) Practical view of redundancy management, application and theory. J Guid Control Dyn 22(1):12–21

    Article  Google Scholar 

  7. Tomayko JE (2000) Computers take flight: A history of NASA’s pioneering digital fly-by-wire project. NASA-SP-2000-4224. Available at http://www.nasa.gov/centers/dryden/pdf/182985main_DFBW_rev1.pdf

  8. Philippe C et al (2011) Aerospace control. In: Samad (Honeywell) T, Annaswamy (MIT) A (eds) The impact of control technology, overview, success stories, and research challenges. IEEE Control System Society. Available at: http://ieeecss.org/general/impact-control-technology

  9. Goupil P (2011) AIRBUS state of the art and practices on FDI and FTC in flight control system. Control Eng Pract 19:524–539

    Article  Google Scholar 

  10. Palmer MT, Abbot KH (1994) Effects of expected-value information and display format on recognition of aircraft subsystem abnormalities. NASA TP-3395, March 1994, A technical paper 3395

    Google Scholar 

  11. Regal DM, Rogers VH, Boucek GP (1989) Situational awareness in the commercial flight deck – definition, measurement, and enhancement. In: Proceedings of the 7th aerospace behavioral technology conference and exposition. SAE, Warrendale, pp 65–69

    Google Scholar 

  12. Johnson DM (1996) A review of fault management techniques used in safety-critical avionic systems. Prog Aerosp Sci 32(5):415–431(17)

    Article  Google Scholar 

  13. Trujillo AC (1998) Pilot mental workload with predictive system status information. In: 4th annual symposium on human interaction with complex systems, Fairborn, OH, pp 73–80

    Google Scholar 

  14. Favre C (1994) Fly-by-wire for commercial aircraft: the Airbus experience. Int J Control 59(1):139–157

    Article  Google Scholar 

  15. Traverse P, Lacaze I, Souyris J (2004) Airbus fly-by-wire: a total approach to dependability. In: Proceedings of the 18th IFIP world computer congress, Toulouse, pp 191–212

    Google Scholar 

  16. FAR/CS 25, Airworthiness standards: transport category airplane, published by FAA, title 14, part 25, and certification specifications for large aeroplanes, published by EASA, CS-25

    Google Scholar 

  17. Alcorta-Garcia E, Zolghadri A, Goupil P (2011) Nonlinear observer-based strategy for aircraft oscillatory failure detection: A380 case study. IEEE Trans Aerosp Electron Syst 47:2792–2806

    Article  Google Scholar 

  18. Briere D, Traverse P (1993) Airbus A320/A330/A340 electrical flight controls—a family of fault-tolerant systems. In: Proceedings of the 23rd international symposium on fault-tolerant computing, Toulouse, pp 616–623

    Google Scholar 

  19. Chen RH, Ng HK, Speyer JL, Guntur LS, Carpenter R (2004) Health monitoring of a satellite system. In: Proceedings of AIAA guidance, navigation, and control conference, Minneapolis, August 2004

    Google Scholar 

  20. Kumar M (2007) Fault detection identification and reconfiguration of flight control system using IMM estimator. In: Proceedings of the digital avionics systems conference, October 2007

    Google Scholar 

  21. Jung B, Kim Y, Ha C, Tahk MJ (2007) Nonlinear reconfigurable flight control system using multiple model adaptive control. Presented at the 17th IFAC symposium on automatic control aerospace, Toulouse, France, June 2007

    Google Scholar 

  22. Tang XD, Tao G, Joshi SM (2003) Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application. Automatica 39(11):1975–1982

    Article  MathSciNet  MATH  Google Scholar 

  23. Oppenheimer MW, Doman DB (2006) Efficient reconfiguration and recovery from damage for air vehicles. Presented at the AIAA guidance, navigation, and control conference, Keystone, CO, August 2006

    Google Scholar 

  24. Ganguli G, Papageorgiou, Glavaski S (2006) Aircraft fault detection, isolation and reconfiguration in the presence of measurement errors. Presented at the AIAA guidance, navigation, and control conference, Keystone, CO, August 2006

    Google Scholar 

  25. Cieslak J, Henry D, Zolghadri A (2010) Fault tolerant flight control: from theory to piloted flight simulator experiments. IET Control Theory Appl 4:1451–1464

    Article  Google Scholar 

  26. Cieslak J, Henry D, Zolghadri A, Goupil P (2008) Development of an active fault tolerant flight control strategy. AIAA J Guid Control Dyn 31:135–147

    Article  Google Scholar 

  27. Edwards C et al (2010) Fault tolerant flight control – a benchmark challenge. Lecture Notes in Control and Information Sciences

    Google Scholar 

  28. Lopez I, Sarigul-Klijn N (2010) A review of uncertainty in flight structural damage monitoring, diagnosis and control. Prog Aerosp Sci 46:247–273

    Article  Google Scholar 

  29. Gheorghe A, Zolghadri A, Cieslak J, Goupil P, Dayre R, Le Berre H (2013) Toward model-based approaches for fast and robust fault detection in aircraft control surface servo-loop: from theory to application. IEEE Control Syst Mag, June 2013

    Google Scholar 

  30. Butler RW (2008) A primer on architectural level fault tolerance. NASA/TM-2008-215108. Langley Research Center, Hampton, VA

    Google Scholar 

  31. Lemai S, OLive X, Charmeau MC (2006) Decisional architecture for autonomous space systems. In: 9th ESA workshop on advanced technologies for robotics and automation, Noordwijk, The Netherlands, 28–30 Nov 2006

    Google Scholar 

  32. Durou O, Godet V, Mangane L, Perarnaud DP, Roques R (2002) Hierarchical fault detection, isolation and recovery applied to COF and ATV avionics. Acta Astronaut 50(9):547–556

    Article  Google Scholar 

  33. Ferrell B, Lewis M, Perotti J, Oostdyk R, Brown B (2010) Functional fault modeling conventions and practices for real-time fault isolation. Ames Research Center; Kennedy Space Center. Available at http://ntrs.nasa.gov/search.jsp?R=20110004336

  34. ECSS 70-11A (2005) Space engineering: space segment operability. European Cooperation for Space Standardization standard, August 2005

    Google Scholar 

  35. Truszkowski WF, Hinchey MG, Rash JL, Rouff CA (2006) Autonomous and autonomic systems: a paradigm for future space exploration missions. IEEE Trans Syst Man Cybern Part C Appl Rev 36(3):279–291

    Article  Google Scholar 

  36. Feather MS, Markosian LZ (2008) Towards certification of a space system application of fault detection and isolation. In: International conference on prognostics and health management, Denver, CO, October 2008

    Google Scholar 

  37. Ferell B, Lewis M, Perotti J, Oostdyk R, Goerz J, Brown R (2010) Lessons learned on implementing fault detection, isolation, and recovery (FDIR) in a ground launch environment. Ames Research Center; Kennedy Space Center. Technical report available at http://ntrs.nasa.gov/search.jsp?R=20110004130

  38. Ding SX (2008) Model-based fault diagnosis techniques: design schemes, algorithms, and tools. Springer, Berlin/Heidelberg

    Google Scholar 

  39. Hwang I, Kim S, Kim Y (2010) A survey on fault detection, isolation and reconfiguration methods. IEEE Trans Control Syst Technol 18(3):636–653

    Article  Google Scholar 

  40. Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Comput Chem Eng 27:293–311

    Article  Google Scholar 

  41. Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis Part II: Qualitative models and search strategies. Comput Chem Eng 27:313–326

    Article  Google Scholar 

  42. Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis Part III: Process history based methods. Comput Chem Eng 27:327–346

    Article  Google Scholar 

  43. Isermann R (2005) Model-based fault-detection and diagnosis status and applications. Annu Rev Control 29(1):71–85

    Article  Google Scholar 

  44. Basseville M, Nikiforov IV (1993) Detection of abrupt changes: theory and application. Prentice Hall, Englewood Cliffs

    Google Scholar 

  45. Patton R, Frank PM, Clark RN (1989) Fault diagnosis in dynamic systems: theory and application. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  46. Patton R (1997) Fault-tolerant control: the 1997 situation. In: SAFEPROCESS’97, IFAC Symposium on fault detection, supervision and safety, Kingston Upon Hull, UK

    Google Scholar 

  47. Chen J, Patton RJ (1999) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic, Boston/Dordrecht/London

    Book  MATH  Google Scholar 

  48. Bokor J, Szabo Z (2009) Fault detection and isolation in nonlinear systems. Annu Rev Control 33:113–123

    Article  Google Scholar 

  49. Cordier MO, Dague P, Lévy F, Mountmain J, Staroswiecki M, Travé-Massuyès L (2004) Conflicts versus analytical redundancy relations: a comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives. IEEE Trans Syst Man Cybern B Cybern 34(5):2163–2177

    Article  Google Scholar 

  50. Travé-Massuyès L, Escobet T, Olive X (2006) Diagnosability analysis based on component-supported analytical redundancy relations. IEEE Trans Syst Man Cybern A Syst Hum 36(6):1146–1160

    Article  Google Scholar 

  51. Beard RV (1971) Failure accommodation in linear systems through self-reorganization. PhD dissertation, Department of Aeronautics Astronautics, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  52. Jones HL (1973) Failure detection in linear systems. PhD dissertation. Department of Aeronautics Astronautics, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  53. Mehra RK, Peschon J (1971) An innovations approach to fault detection and diagnosis in dynamic systems. Automatica 7:637–640

    Article  Google Scholar 

  54. Massoumnia MA (1986) A geometric approach to the synthesis of failure detection filters. IEEE Trans Autom Control 31(9):839–846

    Article  MathSciNet  MATH  Google Scholar 

  55. Chow EY, Willsky AS (1984) Analytical redundancy and the design of robust failure detection systems. IEEE Trans Autom Control 29(7):603–614

    Article  MathSciNet  MATH  Google Scholar 

  56. Zolghadri A, Goetz C, Bergeon B, Denoise X (1998) Integrity monitoring of flight parameters using analytical redundancy. In: Proceedings of the UKACC international conference on control (CONTROL ‘98), Swansea, UK, pp 1534–1539

    Google Scholar 

  57. Zolghadri A (1996) An algorithm for real-time failure detection in Kalman filters. IEEE Trans Autom Control 41(10):1537–1540

    Article  MathSciNet  MATH  Google Scholar 

  58. Douglas RK, Speyer JL (1996) Robust fault detection filter design. J Guid Control Dyn 19(1):214–218

    Article  MATH  Google Scholar 

  59. Chen J, Patton RJ, Zhang HY (1996) Design of unknown input observers and robust fault-detection filters. Int J Control 63(1):85–105

    Article  MathSciNet  MATH  Google Scholar 

  60. Balas MJ (1999) Do all linear flexible structures have convergent second order observers? AIAA J Guid Control Dyn 22(6):905–908

    Article  Google Scholar 

  61. Stoustrup J, Niemann JH (2002) Fault estimation—a standard problem. Int J Robust Nonlinear Control 12:649–673

    Article  MathSciNet  MATH  Google Scholar 

  62. Zolghadri A, Castang F, Henry D (2006) Design of robust fault detection filters for multivariable feedback systems. Int J Model Simul 26:17–26

    Google Scholar 

  63. Bokor J, Balas G (2004) Detection filter design for LPV systems – a geometric approach. Automatica 40:511–518

    Article  MathSciNet  MATH  Google Scholar 

  64. Yan XG, Edwards C (2007) Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43:1605–1614

    Article  MathSciNet  MATH  Google Scholar 

  65. Henry D, Zolghadri A (2005) Design and analysis of robust residual generators for systems under feedback control. Automatica 41:251–264

    Article  MathSciNet  MATH  Google Scholar 

  66. Henry D, Zolghadri A (2005) Design of fault diagnosis filters: a multi-objective approach. J Franklin Inst 342(4):421–446

    Article  MathSciNet  MATH  Google Scholar 

  67. Henry D, Zolghadri A (2006) Norm-based design of robust FDI schemes for uncertain systems under feedback control: comparison of two approaches. Control Eng Pract 14(9):1081–1097

    Article  Google Scholar 

  68. Zolghadri A, Henry D, Grenaille S (2008) Fault diagnosis for LPV systems. In: 16th IEEE Mediterranean conference on control and automation, Ajaccio, France

    Google Scholar 

  69. Grenaille S, Henry D, Zolghadri A (2008) A method for designing fault diagnosis filters for LPV polytopic systems. J Control Sci Eng. Article ID 231697, Vol 1, January 2008

    Google Scholar 

  70. Ganguli S, Marcos A, Balas G (2002) Reconfigurable LPV control design for Boeing 747-100/200 longitudinal axis. In: American control conference. Anchorage, Alaska, USA, 8–10 May 2002

    Google Scholar 

  71. Henry D, Zolghadri A, Monsion M, Ygorra S (2002) Off-line robust fault diagnosis using the generalized structured singular values. Automatica 38:1347–1358

    Article  MathSciNet  MATH  Google Scholar 

  72. Raissi T, Videau G, Zolghadri A (2010) Interval observers design for consistency checks of nonlinear continuous-time systems. Automatica 46:518–527

    Article  MathSciNet  MATH  Google Scholar 

  73. Efimov D, Zolghadri A, Raissi T (2011) Actuators fault detection and compensation under feedback control. Automatica 47:1699–1705

    Article  MathSciNet  MATH  Google Scholar 

  74. Saif M, Xiong Y (2003) Sliding mode observers and their application in fault diagnosis. In: Caccavale F, Villani L (eds) Fault diagnosis and fault tolerance for mechatronic systems: recent advances, vol 1, Springer tracts in advanced robotics. Springer, Berlin, pp 1–57

    Chapter  Google Scholar 

  75. Alazard D, Apkarian P (1999) Exact observer-based structures for arbitrary compensators. Int J Robust NL Control 9:101–118

    Article  MathSciNet  MATH  Google Scholar 

  76. Zhou K, Doyle JC, Glover K (1995) Robust and optimal control. Prentice Hall, Upper Saddle River

    Google Scholar 

  77. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Ann Rev Control 32(2):229–252

    Article  Google Scholar 

  78. Yang H, Cocquempot V, Jiang B (2009) Robust fault tolerant tracking control with applications to hybrid nonlinear systems. IET Control Theory Appl 3(2):211–224

    Article  MathSciNet  Google Scholar 

  79. Staroswiecki M, Yang H, Jiang B (2007) Progressive accommodation of parametric faults in LQ control. Automatica 43:2070–2076

    Article  MathSciNet  MATH  Google Scholar 

  80. Alwi H, Edwards C (2008) Fault tolerant control using sliding modes with on-line control allocation. Automatica 44:1859–1866

    Article  MathSciNet  MATH  Google Scholar 

  81. Hamayun MT, Edwards C, Alwi H (2010) Integral sliding mode fault tolerant control incorporating on-line control allocation. In: 11th international workshop on variable structure systems, Mexico City, 26–28 June 2010

    Google Scholar 

  82. Ding SX (2009) Integrated design of feedback controllers and fault detectors. Annu Rev Control 33:124–135

    Article  Google Scholar 

  83. Gaspar P, Bokor J (2006) A fault-tolerant rollover prevention system based on a LPV method. Int J Veh Des 42(3–4):392–412

    Article  Google Scholar 

  84. Liberzon D (2003) Switching in systems and control. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  85. Marcos A, Balas G (2005) A robust integrated controller/diagnosis aircraft application. Int J Robust NL Control 15:531–551

    Article  MathSciNet  MATH  Google Scholar 

  86. Weng Z, Patton R, Cui P (2008) Integrated design of robust controller and fault estimator for linear parameter varying systems. In: 17th World Congress IFAC, Seoul, Korea

    Google Scholar 

  87. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32:229–252

    Article  Google Scholar 

  88. Shin J-Y, Belcastro CM (2006) Performance analysis on fault tolerant control system. IEEE Trans Control Syst Technol 14(9):1283–1294

    Google Scholar 

  89. Yang H, Jiang B, Staroswiecki M (2009) Supervisory fault tolerant control for a class of uncertain nonlinear systems. Automatica 45:2319–2324

    Article  MathSciNet  MATH  Google Scholar 

  90. Oudghiri M, Chadli M, El Hajjaji A (2008) Robust observer-based fault tolerant control for vehicle lateral dynamics. Int J Veh Des 48:173–189

    Article  Google Scholar 

  91. Morio V (2009) Contribution au développement d’une loi de guidage autonome par platitude. Application à une mission de rentrée atmosphérique (Shuttle orbiter STS-1). PhD dissertation, Bordeaux 1 university, Bordeaux, France

    Google Scholar 

  92. Van den Bossche D (2006) The A380 flight control electrohydrostatic actuators, achievements and lessons learnt. In: Proceedings of the 25th Congress of the International Council of the Aeronautical Sciences, Hamburg, Germany

    Google Scholar 

  93. Zolghadri A, Gheorghe A, Cieslak J, Henry D, Goupil P, Dayre R, Le Berre H (2011) A model-based solution to robust and early detection of control surface runaways. SAE Int J Aerosp 4:1500–1505

    Google Scholar 

  94. Kurtoglu T, Johnson SB, Barszcz E, Johnson JR, Robinson PI (2008) Integrating system health management into the early design of aerospace systems using Functional Fault Analysis. IEEE conference on prognostics and health management, Denver

    Google Scholar 

  95. Deckert JC, Desai MN, Deyst JJ, Willsky AS (1977) F-8 DFBW sensor failure identification using analytic redundancy. IEEE Trans Autom Control 22(5):795–809

    Article  Google Scholar 

  96. Wilbers DM, Speyer JL (2002) Detection filters for aircraft sensor and actuator faults. In: Proceedings of the IEEE international conference on control applications, Jerusalem, Israel

    Google Scholar 

  97. Menke TE, Maybeck PS (1995) Sensor/actuator failure detection in the VISTA F-16 by multiple model adaptive estimation. IEEE Trans Aerosp Electron Syst 31(4):1218–1229

    Article  Google Scholar 

  98. Kim S, Choi J, Kim Y (2008) Fault detection and diagnosis of aircraft actuators using fuzzy-tuning IMM filter. IEEE Trans Aerosp Electron Syst 44(3):940–952

    Article  Google Scholar 

  99. Chen RH, Ng HK, Speyer JL, Guntur LS, Carpenter R (2004) Health monitoring of a satellite system. In: Proceedings of the AIAA guidance, navigation, and control conference, Boston, August 2004

    Google Scholar 

  100. Patton R, Uppal F, Simani S, Polle B (2010) Robust FDI applied to thruster faults of a satellite system. Control Eng Pract 18(9):1093–1109

    Article  Google Scholar 

  101. Falcoz A, Henry D, Zolghadri A (2010) Robust fault diagnosis for atmospheric re-entry vehicles: a case study. IEEE Trans Syst Man Cybern Part A Syst Hum 40:886–899

    Article  Google Scholar 

  102. Falcoz A, Henry D, Zolghadri A, Bornschleg E, Ganet M (2008) On-board model-based robust FDIR strategy for reusable launch vehicles (RLV). In: 7th international ESA conference on guidance, navigation and control systems, County Kerry, Ireland

    Google Scholar 

  103. Henry D, Falcoz A, Zolghadri A (2009) Structured H∞/H− LPV filters for fault diagnosis: some new results. In: 7th IFAC symposium on fault detection, supervision and safety of technical processes, Barcelona, Spain

    Google Scholar 

  104. Henry D (2008) Fault diagnosis of the microscope satellite actuators using Hinf/H- filters. AIAA J Guid Control Dyn 31(3):699–711

    Article  Google Scholar 

  105. Zolghadri A (2000) A redundancy-based strategy for safety management in a modern civil aircraft. Control Eng Pract 8(5):545–554

    Article  Google Scholar 

  106. Zolghadri A (2002) Early warning and prediction of flight parameter abnormalities for improved system safety assessment. Reliab Eng Syst Saf 16:19–27

    Article  Google Scholar 

  107. Papageorgiou C, Glover K (2005) Robustness analysis of nonlinear flight controllers. AIAA J Guid Control Dyn 28(4):639–648

    Article  Google Scholar 

  108. Rotstein HP, Ingvalson R, Keviczky T, Balas GJ (2006) Fault-detection design for uninhabited aerial vehicles. J Guid Control Dyn 29(5):1051–1060

    Article  Google Scholar 

  109. James M, Dubon L (2000) An autonomous diagnostic and prognostic monitoring system for NASA’s deep space network. Proc IEEE Aerosp Conf 2:403–414

    Google Scholar 

  110. Bernard D, Dorais G, Gamble E, Kanefsky B, Kurien J, Man G, Millar W, Muscettola N, Nayak P, Rajan K, Rouquette N, Smith B, Taylor W, Tung YW (1999) Spacecraft autonomy flight experience: the DS1 remote agent experiment. In: Proceedings of AIAA, Albuquerque, NM, pp 28–30

    Google Scholar 

  111. http://www.nasa.gov/centers/ames/research/technology-onepagers/livingstone2-modelbased.html

  112. Bickford RL et al (1999) Real-time sensor data validation for space shuttle main engine telemetry monitoring. In: AIAA/ASME/SAE/ASEE 35th joint propulsion conference and exhibit, Los Angeles, CA

    Google Scholar 

  113. Lombaerts TJJ (2010) Fault tolerant flight control. A physical model approach. PhD thesis, TuDelft

    Google Scholar 

  114. Azam M, Pattipati K, Allanach J, Poll S, Patterson-Hine A (2005) In-flight fault detection and isolation in aircraft flight control systems. In: IEEE aerospace conference, 5–12 Mar 2005

    Google Scholar 

  115. http://addsafe.deimos-space.com

  116. Goupil P (2010) Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy. Control Eng Pract 18(9):1110–1119

    Article  Google Scholar 

  117. http://en.wikipedia.org/wiki/Technology_readiness_level

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Zolghadri, A., Henry, D., Cieslak, J., Efimov, D., Goupil, P. (2014). Review and Basic Concepts. In: Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5313-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5313-9_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5312-2

  • Online ISBN: 978-1-4471-5313-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics