Skip to main content

Animal Models for Studies of Arterial Stiffness

  • Chapter
  • First Online:
Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

Arterial stiffness is a perfect example of translational research spanning the understanding of the molecular determinants of the arterial wall constituents and their organization to the physiology of normal and early vascular ageing.

The most widely used parameter to investigate arterial stiffness in rodents is pulse wave velocity (PWV). The relation between strain and stress is also established to characterize the intrinsic behaviour of the arterial wall independent of geometric factors.

The first attempts to explain arterial stiffness by the properties of the structural components of the arterial wall addressed the role of the principal constituents, elastin and collagen fibres and smooth muscle cells. To complete this approach, the roles of the adhesion molecules, inflammation, blood pressure variability, NO, integrins and metalloproteinases in arterial stiffness were also investigated by attempting to try and interfere directly with these different factors.

Hypertensive rodents were the first experimental models used and employed to test remodelling and vascular function in an environment mimicking human physiology. Then, investigations were completed with other cardiovascular animal models (mainly kidney disease, obesity, blood pressure variability or ageing) to discover more specific therapeutic targets related to other mechanisms that trigger arterial stiffness. Nowadays, the advances in mouse genetics have provided numerous genotypes and phenotypes to study changes in arterial mechanics with disease progression and treatment. The aim of modifying a single gene to understand the mechanism of this polygenic disease has led to complete animal models using in vitro cellular approaches.

The response to these questions will ultimately come from more complete knowledge of the mechanisms involved, using pharmacological and other tools in existing and/or newly emerging animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107(22):2864–9.

    Article  PubMed  Google Scholar 

  2. Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res. 1998;39(1):77–88.

    Article  CAS  PubMed  Google Scholar 

  3. Monassier L, Combe R, El Fertak L. Mouse models of hypertension. Drug Discov Today. 2006;3(3):273–81.

    Google Scholar 

  4. Cvetkovic B, Sigmund CD. Understanding hypertension through genetic manipulation in mice. Kidney Int. 2000;57(3):863–74.

    Article  CAS  PubMed  Google Scholar 

  5. Amin M, Le VP, Wagenseil JE. Mechanical testing of mouse carotid arteries: from newborn to adult. J Vis Exp. 2012;60:e3733.

    Google Scholar 

  6. Sehgel N, Zhu Y, Sun Z, et al. Increased vascular smooth muscle cell stiffness: a novel mechanism for aortic stiffness in hypertension. Am J Physiol Heart Circ Physiol. 2013;305(9):H1281–7.

    Article  CAS  PubMed  Google Scholar 

  7. Meaume S, Benetos A, Henry OF, et al. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol. 2001;21(12):2046–50.

    Article  CAS  PubMed  Google Scholar 

  8. Milnor W. Properties of the vascular wall. In: Collins N, editor. Hemodynamics. Baltimore: Williams and Wilkins; 1989. p. 58–101.

    Google Scholar 

  9. Glaser E, Lacolley P, Boutouyrie P, et al. Dynamic versus static compliance of the carotid artery in living Wistar-Kyoto rats. J Vasc Res. 1995;32(4):254–65.

    Article  CAS  PubMed  Google Scholar 

  10. Hayoz D, Rutschmann B, Perret F, et al. Conduit artery compliance and distensibility are not necessarily reduced in hypertension. Hypertension. 1992;20(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  11. Lacolley P, Bezie Y, Girerd X, et al. Aortic distensibility and structural changes in sinoaortic-denervated rats. Hypertension. 1995;26(2):337–40.

    Article  CAS  PubMed  Google Scholar 

  12. Levy B. Mechanics of the large artery wall. In: Lévy BI, Tedgui A, editors. Biology of the arterial wall. Dordrecht: Kluwer; 1999. p. 13–24.

    Chapter  Google Scholar 

  13. van Gorp AW, van Ingen Schenau DS, Hoeks AP, et al. Aortic wall properties in normotensive and hypertensive rats of various ages in vivo. Hypertension. 1995;26(2):363–8.

    Article  PubMed  Google Scholar 

  14. Ruiz-Feria CA, Yang Y, Thomason DB, et al. Pulse wave velocity and age- and gender-dependent aortic wall hardening in fowl. Comp Biochem Physiol A Mol Integr Physiol. 2009;154(4):429–36.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bezie Y, Lamaziere JM, Laurent S, et al. Fibronectin expression and aortic wall elastic modulus in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 1998;18(7):1027–34.

    Article  CAS  PubMed  Google Scholar 

  16. Pauletto P, Scannapieco G, Vescovo G, et al. Catecholamine-induced cardiovascular disease in the spontaneously hypertensive and atherosclerotic turkey. Methods Find Exp Clin Pharmacol. 1988;10(6):357–62.

    CAS  PubMed  Google Scholar 

  17. Hadjiisky P, Bourdillon MC, Grosgogeat Y. Experimental models of atherosclerosis. Contribution, limits and trends. Arch Mal Coeur Vaiss. 1991;84(11):1593–603.

    CAS  PubMed  Google Scholar 

  18. Ng K, Hildreth CM, Phillips JK, et al. Aortic stiffness is associated with vascular calcification and remodeling in a chronic kidney disease rat model. Am J Physiol Renal Physiol. 2011;300(6):F1431–6.

    Article  CAS  PubMed  Google Scholar 

  19. Sloboda N, Feve B, Thornton SN, et al. Fatty acids impair endothelium-dependent vasorelaxation: a link between obesity and arterial stiffness in very old Zucker rats. J Gerontol A Biol Sci Med Sci. 2012;67(9):927–38.

    Article  PubMed  Google Scholar 

  20. Sista AK, O’Connell MK, Hinohara T, et al. Increased aortic stiffness in the insulin-resistant Zucker fa/fa rat. Am J Physiol Heart Circ Physiol. 2005;289(2):H845–51.

    Article  CAS  PubMed  Google Scholar 

  21. Isabelle M, Simonet S, Ragonnet C, et al. Chronic reduction of nitric oxide level in adult spontaneously hypertensive rats induces aortic stiffness similar to old spontaneously hypertensive rats. J Vasc Res. 2012;49(4):309–18.

    Article  CAS  PubMed  Google Scholar 

  22. Qiu H, Zhu Y, Sun Z, Trzeciakowski JP, et al. Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ Res. 2010;107(5):615–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cantini C, Kieffer P, Corman B, et al. Aminoguanidine and aortic wall mechanics, structure, and composition in aged rats. Hypertension. 2001;38(4):943–8.

    Article  CAS  PubMed  Google Scholar 

  24. Osborne-Pellegrin M, Labat C, Mercier N, et al. Changes in aortic stiffness related to elastic fiber network anomalies in the Brown Norway rat during maturation and aging. Am J Physiol Heart Circ Physiol. 2010;299(1):H144–52.

    Article  CAS  PubMed  Google Scholar 

  25. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63(4):582–92.

    Article  CAS  PubMed  Google Scholar 

  26. Slove S, Lannoy M, Behmoaras J, et al. Potassium channel openers increase aortic elastic fiber formation and reverse the genetically determined elastin deficit in the BN rat. Hypertension. 2013;62(4):794–801.

    Article  CAS  PubMed  Google Scholar 

  27. Dabire H, Lacolley P, Chaouche-Teyara K, et al. Relationship between arterial distensibility and low-frequency power spectrum of blood pressure in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2002;39(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  28. Bouissou C, Lacolley P, Dabire H, et al. Increased stiffness and cell-matrix interactions of abdominal aorta in two experimental non-hypertensive models: long-term chemical sympathectomized and sinoaortic-denervated rats. J Hypertens. 2014;32:652–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lacolley P, Glaser E, Challande P, et al. Structural changes and in situ aortic pressure-diameter relationship in long-term chemical-sympathectomized rats. Am J Physiol. 1995;269(2 Pt 2):H407–16.

    CAS  PubMed  Google Scholar 

  30. Li ZY, Xu TY, Zhang SL, et al. Telemetric ambulatory arterial stiffness index, a predictor of cardio-cerebro-vascular mortality, is associated with aortic stiffness-determining factors. CNS Neurosci Ther. 2013;19(9):667–74.

    Article  PubMed  Google Scholar 

  31. Cox RH. Basis for the altered arterial wall mechanics in the spontaneously hypertensive rat. Hypertension. 1981;3(4):485–95.

    Article  CAS  PubMed  Google Scholar 

  32. Ito H. Vascular connective tissue change in hypertension. In: Lee RE, editor. Blood vessel changes in hypertension: structure and function. Boca Raton: CRC Press; 1989. p. 99–122.

    Google Scholar 

  33. Cox RH. Mechanical properties of arteries in hypertension. In: Lee RMKW, editor. Blood vessel changes in hypertension: structure and function. Boca Raton: CRC Press; 1989.

    Google Scholar 

  34. Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev. 2009;89(3):957–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wagenseil JE, Ciliberto CH, Knutsen RH, et al. Reduced vessel elasticity alters cardiovascular structure and function in newborn mice. Circ Res. 2009;104(10):1217–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wan W, Yanagisawa H, Gleason Jr RL. Biomechanical and microstructural properties of common carotid arteries from fibulin-5 null mice. Ann Biomed Eng. 2010;38(12):3605–17.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Small J, North A. Architecture of the smooth muscle cell. In: Schwartz SM, Mecham RP, editors. The vascular smooth muscle cell. New York: Academic; 1995. p. 169–88.

    Google Scholar 

  38. Bezie Y, Lacolley P, Laurent S, et al. Connection of smooth muscle cells to elastic lamellae in aorta of spontaneously hypertensive rats. Hypertension. 1998;32(1):166–9.

    Article  CAS  PubMed  Google Scholar 

  39. Clark JM, Glagov S. Structural integration of the arterial wall. I. Relationships and attachments of medial smooth muscle cells in normally distended and hyperdistended aortas. Lab Invest. 1979;40(5):587–602.

    CAS  PubMed  Google Scholar 

  40. Osborne-Pellegrin MJ. Some ultrastructural characteristics of the renal artery and abdominal aorta in the rat. J Anat. 1978;125(Pt 3):641–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Galmiche G, Labat C, Mericskay M, et al. Inactivation of serum response factor contributes to decrease vascular muscular tone and arterial stiffness in mice. Circ Res. 2013;112(7):1035–45.

    Article  CAS  PubMed  Google Scholar 

  42. Retailleau K, Toutain B, Galmiche G, et al. Selective involvement of serum response factor in pressure-induced myogenic tone in resistance arteries. Arterioscler Thromb Vasc Biol. 2013;33(2):339–46.

    Article  CAS  PubMed  Google Scholar 

  43. Lacolley P, Challande P, Boumaza S, et al. Mechanical properties and structure of carotid arteries in mice lacking desmin. Cardiovasc Res. 2001;51(1):178–87.

    Article  CAS  PubMed  Google Scholar 

  44. Benetos A, Pannier B, Brahimi M, et al. Dose-related changes in the mechanical properties of the carotid artery in WKY rats and SHR following relaxation of arterial smooth muscle. J Vasc Res. 1993;30(1):23–9.

    CAS  PubMed  Google Scholar 

  45. Fridez P, Zulliger M, Bobard F, et al. Geometrical, functional, and histomorphometric adaptation of rat carotid artery in induced hypertension. J Biomech. 2003;36(5):671–80.

    Article  CAS  PubMed  Google Scholar 

  46. Gabella G. Structural apparatus for force transmission in smooth muscles. Physiol Rev. 1984;64(2):455–77.

    CAS  PubMed  Google Scholar 

  47. Ingber D. Integrins as mechanical transducers. Curr Opin Cell Biol. 1991;3(5):841–8.

    Article  CAS  PubMed  Google Scholar 

  48. Wilson E, Sudhir K, Ives HE. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest. 1995;96(5):2364–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Saouaf R, Takasaki I, Eastman E, et al. Fibronectin biosynthesis in the rat aorta in vitro. Changes due to experimental hypertension. J Clin Invest. 1991;88:1182–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Boumaza S, Arribas SM, Osborne-Pellegrin M, et al. Fenestrations of the carotid internal elastic lamina and structural adaptation in stroke-prone spontaneously hypertensive rats. Hypertension. 2001;37(4):1101–7.

    Article  CAS  PubMed  Google Scholar 

  51. Zanchi A, Wiesel P, Aubert JF, et al. Time course changes of the mechanical properties of the carotid artery in renal hypertensive rats. Hypertension. 1997;29(5):1199–203.

    Article  CAS  PubMed  Google Scholar 

  52. Fitch RM, Vergona R, Sullivan ME, et al. Nitric oxide synthase inhibition increases aortic stiffness measured by pulse wave velocity in rats. Cardiovasc Res. 2001;51:351–8.

    Article  CAS  PubMed  Google Scholar 

  53. Kato H, Hou J, Chobanian AV, et al. Effects of angiotensin II infusion and inhibition of nitric oxide synthase on the rat aorta. Hypertension. 1996;28:153–8.

    Article  CAS  PubMed  Google Scholar 

  54. Labat C, Lacolley P, Lajemi M, et al. Effects of valsartan on mechanical properties of the carotid artery in spontaneously hypertensive rats under high-salt diet. Hypertension. 2001;38(3):439–43.

    Article  CAS  PubMed  Google Scholar 

  55. Mercier N, Labat C, Louis H, et al. Sodium, arterial stiffness, and cardiovascular mortality in hypertensive rats. Am J Hypertens. 2007;20(3):319–25.

    Article  CAS  PubMed  Google Scholar 

  56. Lacolley P, Labat C, Pujol A, et al. Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: effects of eplerenone. Circulation. 2002;106(22):2848–53.

    Article  CAS  PubMed  Google Scholar 

  57. Ammarguellat FZ, Gannon PO, Amiri F, et al. Fibrosis, matrix metalloproteinases, and inflammation in the heart of DOCA-salt hypertensive rats: role of ET(A) receptors. Hypertension. 2002;39(2 Pt 2):679–84.

    Article  CAS  PubMed  Google Scholar 

  58. Cox RH. Effects of deoxycorticosterone on arterial wall properties in two-kidney rats. J Hypertens. 1986;4(5):557–65.

    Article  CAS  PubMed  Google Scholar 

  59. Takasaki I, Chobanian AV, Sarzani R, et al. Effect of hypertension on fibronectin expression in the rat aorta. J Biol Chem. 1990;265(35):21935–9.

    CAS  PubMed  Google Scholar 

  60. Intengan HD, Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension. 2000;36(3):312–8.

    Article  CAS  PubMed  Google Scholar 

  61. Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension. 2001;38(3 Pt 2):581–7.

    Article  CAS  PubMed  Google Scholar 

  62. Louis H, Kakou A, Regnault V, et al. Role of alpha1beta1-integrin in arterial stiffness and angiotensin-induced arterial wall hypertrophy in mice. Am J Physiol Heart Circ Physiol. 2007;293(4):H2597–604.

    Article  CAS  PubMed  Google Scholar 

  63. Mao X, Said R, Louis H, et al. Cyclic stretch-induced thrombin generation by rat vascular smooth muscle cells is mediated by the integrin αvβ3 pathway. Cardiovasc Res. 2012;96(3):513–23.

    Article  CAS  PubMed  Google Scholar 

  64. Et-Taouil K, Schiavi P, Lévy BI, et al. Sodium intake, large artery stiffness, and proteoglycans in the spontaneously hypertensive rat. Hypertension. 2001;38(5):1172–6.

    Article  CAS  PubMed  Google Scholar 

  65. Gandley RE, McLaughlin MK, Koob TJ, et al. Contribution of chondroitin-dermatan sulfate-containing proteoglycans to the function of rat mesenteric arteries. Am J Physiol. 1997;273(2 Pt 2):H952–60.

    CAS  PubMed  Google Scholar 

  66. Calvier L, Miana M, Rebou LP, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  67. López-Andrés N, Calvier L, Labat C, et al. Absence of cardiotrophin 1 is associated with decreased age-dependent arterial stiffness and increased longevity in mice. Hypertension. 2013;61(1):120–9.

    Article  PubMed  Google Scholar 

  68. Nguyen Dinh Cat A, Griol-Charhbili V, Loufrani L, et al. The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 2010;24(7):2454–63.

    Article  PubMed  Google Scholar 

  69. Galmiche G, Pizard A, Gueret A, et al. Smooth muscle cell mineralocorticoid receptors are mandatory for aldosterone-salt to induce vascular stiffness. Hypertension. 2014;63:520–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Lacolley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lacolley, P., Thornton, S.N., Bezie, Y. (2014). Animal Models for Studies of Arterial Stiffness. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics