Skip to main content

The Reality of Aging Viewed from the Arterial Wall

  • Chapter
  • First Online:
Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

The main function of central arteries is to transform the pulsatile flow generated by the heart into an almost continuous distal flow. Major changes in the arterial wall ensue with aging, and are characterized by endothelial dysfunction, smooth muscle proliferation, elastin fragmentation, fibrosis, amyloid protein deposition, and calcification. These processes are driven by a proinflammatory microenvironment that features increased production of angiotensin II (Ang II) and its downstream signaling cascade. The aforementioned structural changes result in a loss of the dampening function of central arteries, widening of pulse pressure, and subsequent adverse effects on the heart and end-organ systems, i.e. the brain and kidneys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation. 2003;107(1):139–46.

    Article  PubMed  Google Scholar 

  2. Faury G. Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol Biol (Paris). 2001;49(4):310–25.

    Article  CAS  Google Scholar 

  3. Lakatta EG, Wang M, Najjar SS. Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med Clin North Am. Elsevier Ltd; 2009 ;93(3):583–604.

    Google Scholar 

  4. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215.

    Article  PubMed  Google Scholar 

  5. Najjar SS, Scuteri A, Shetty V, Wright JG, Muller DC, Fleg JL, et al. Pulse wave velocity is an independent predictor of the longitudinal increase in systolic blood pressure and of incident hypertension in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2008;51:1377–83.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Wang M, et al. Proinflammation: the key to arterial aging. TEM. 2014;25(2):72.

    CAS  PubMed  Google Scholar 

  7. Lakatta EG. The reality of aging viewed from the arterial wall. Artery Research. 2013;7(2):73.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46(3):454–62.

    Article  CAS  PubMed  Google Scholar 

  9. Wang M, Lakatta EG. Altered regulation of matrix metalloproteinase-2 in aortic remodeling during aging. Hypertension. 2002;39(4):865–73.

    Article  CAS  PubMed  Google Scholar 

  10. Spinetti G, Wang M, Monticone R, Zhang J, Zhao D, Lakatta EG. Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arterioscler Thromb Vasc Biol. 2004;24(8):1397–402.

    Article  CAS  PubMed  Google Scholar 

  11. Wang M, Zhang J, Jiang L-Q, Spinetti G, Pintus G, Monticone R, et al. Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension. 2007;50(1):219–27.

    Article  CAS  PubMed  Google Scholar 

  12. Ong K-T, Delerme S, Pannier B, Safar ME, Benetos A, Laurent S, et al. Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens. 2011;29(6):1034–42.

    Article  CAS  PubMed  Google Scholar 

  13. Lakatta EG. Central arterial aging and the epidemic of systolic hypertension and atherosclerosis. J Am Soc Hypertens. 2007;1:302–40.

    Article  PubMed  Google Scholar 

  14. Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol. 1994;24(2):471–6.

    Article  CAS  PubMed  Google Scholar 

  15. Paneni F, Osto E, Costantino S, Mateescu B, Briand S, Coppolino G, et al. Deletion of the AP-1 transcription factor JunD induces oxidative stress and accelerates Age-related endothelial dysfunction. Circulation. 2013;127(11):1229–40.

    Article  CAS  PubMed  Google Scholar 

  16. Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res. 2012;35(11):1039–47. The Japanese Society of Hypertension.

    Article  CAS  PubMed  Google Scholar 

  17. Bode-Böger SM, Muke J, Surdacki A, Brabant G, Böger RH, Frölich JC. Oral L-arginine improves endothelial function in healthy individuals older than 70 years. Vasc Med. 2003;8(2):77–81.

    Article  PubMed  Google Scholar 

  18. Williamson KA, Hamilton A, Reynolds JA, Sipos P, Crocker I, Stringer SE, et al. Age-related impairment of endothelial progenitor cell migration correlates with structural alterations of heparan sulfate proteoglycans. Aging Cell. 2013;12(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  19. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascula. J Am Soc Echocardiogr. 2008;21(2):93–111.

    Article  PubMed  Google Scholar 

  20. Nagai Y, Metter EJ, Earley CJ, Kemper MK, Becker LC, Lakatta EG, et al. Increased carotid artery intimal-medial thickness in asymptomatic older subjects with exercise-induced myocardial ischemia. Circulation. 1998;98(15):1504–9.

    Article  CAS  PubMed  Google Scholar 

  21. Yan SF, Ramasamy R, Naka Y, Schmidt AM. Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res. 2003;93(12):1159–69.

    Article  CAS  PubMed  Google Scholar 

  22. Wang M, Takagi G, Asai K, Resuello RG, Natividad FF, Vatner DE, et al. Aging increases aortic MMP-2 activity and angiotensin II in nonhuman primates. Hypertension. 2003;41(6):1308–16.

    Article  CAS  PubMed  Google Scholar 

  23. Adams MR, Nakagomi A, Keech A, Robinson J, McCredie R, Bailey BP, et al. Carotid intima-media thickness is only weakly correlated with the extent and severity of coronary artery disease. Circulation. 1995;92(8):2127–34.

    Article  CAS  PubMed  Google Scholar 

  24. Kass DA, Shapiro EP, Kawaguchi M, Capriotti AR, Scuteri A, deGroof RC, et al. Improved arterial compliance by a novel advanced glycation end-product crosslink breaker. Circulation. 2001;104(13):1464–70.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang L, Zhang J, Monticone RE, Telljohann R, Wu J, Wang M, et al. Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis. Hypertension. 2012;60(5):1192–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Johnson KA, Polewski M, Terkeltaub RA. Transglutaminase 2 is central to induction of the arterial calcification program by smooth muscle cells. Circ Res. 2008;102(5):529–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jandu SK, Webb AK, Pak A, Sevinc B, Nyhan D, Belkin AM, et al. Nitric oxide regulates tissue transglutaminase localization and function in the vasculature. Amino Acids. 2013;44(1):261–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hinz B. Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep. 2009;11(2):120–6.

    Article  CAS  PubMed  Google Scholar 

  29. Iwata T, Kamei T, Uchino F, Mimaya H, Yanagaki T, Etoh H. Pathological study on amyloidosis–relationship of amyloid deposits in the aorta to aging. Acta Pathol Jpn. 1978;28(2):193–203.

    CAS  PubMed  Google Scholar 

  30. Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349(6):583–96.

    Article  CAS  PubMed  Google Scholar 

  31. Westermark P. Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 2005;272(23):5942–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sciarretta KL, Gordon DJ, Meredith SC. Peptide-based inhibitors of amyloid assembly. Methods Enzymol. 2006;413:273–312.

    Article  CAS  PubMed  Google Scholar 

  33. Thundimadathil J, Roeske RW, Jiang H-Y, Guo L. Aggregation and porin-like channel activity of a beta sheet peptide. Biochemistry. 2005;44(30):10259–70.

    Article  CAS  PubMed  Google Scholar 

  34. Larsson A, Peng S, Persson H, Rosenbloom J, Abrams WR, Wassberg E, et al. Lactadherin binds to elasti-- starting point for medin amyloid formation? Amyloid. Informa UK Ltd UK; 2006;13(2):78–85.

    Google Scholar 

  35. Peng S, Glennert J, Westermark P. Medin-amyloid: a recently characterized age-associated arterial amyloid form affects mainly arteries in the upper part of the body. Amyloid. 2005;12(2):96–102.

    Article  CAS  PubMed  Google Scholar 

  36. Mucchiano G, Cornwell GG, Westermark P. Senile aortic amyloid. Evidence for two distinct forms of localized deposits. Am J Pathol. 1992;140(4):871–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Morrell CH, Brant LJ, Ferrucci L. Model choice can obscure results in longitudinal studies. J Gerontol A Biol Sci Med Sci. 2009;64(2):215–22.

    Article  PubMed  Google Scholar 

  38. Häggqvist B, Näslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, et al. Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci U S A. 1999;96(15):8669–74.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Cheng M, Li B, Li X, Wang Q, Zhang J, Jing X, et al. Correlation between serum lactadherin and pulse wave velocity and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2012;95(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  40. Lam CSP, Xanthakis V, Sullivan LM, Lieb W, Aragam J, Redfield MM, et al. Aortic root remodeling over the adult life course: longitudinal data from the Framingham Heart Study. Circulation. 2010;122(9):884–90.

    Article  PubMed Central  PubMed  Google Scholar 

  41. AlGhatrif M, Strait JB, Morrell CH, Canepa M, Wright J, Elango P, et al. Longitudinal trajectories of arterial stiffness and the role of blood pressure: the Baltimore longitudinal study of aging. Hypertension. 2013;62(5):934–51.

    Article  CAS  PubMed  Google Scholar 

  42. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308(9):875–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. AlGhatrif M, Strait JB, Morrell CH, Canepa M, Wright J, Elango P, et al. Attenuated aortic dilatation, not increased wall stiffness best explains the rise in pulse pressure in women with aging: results from the Baltimore longitudinal study of aging. Circulation. 2013;128:A18061.

    Google Scholar 

  44. O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50(1):1–13.

    Article  PubMed  Google Scholar 

  45. Nichols W, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Boca Raton: CRC Press; 2011.

    Google Scholar 

  46. Mitchell GF, Lacourciere Y, Ouellet JP, Izzo Jr JL, Neutel J, Kerwin LJ, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.

    Article  PubMed  Google Scholar 

  47. Vaitkevicius PV, Fleg JL, Engel JH, O’Connor FC, Wright JG, Lakatta LE, et al. Effects of age and aerobic capacity on arterial stiffness in healthy-adults. Circulation. 1993;88:1456–62.

    Article  CAS  PubMed  Google Scholar 

  48. Redheuil A, Yu W-C, Mousseaux E, Harouni AA, Kachenoura N, Wu CO, et al. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol. 2011;58(12):1262–70.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43(6):1239–45.

    Article  CAS  PubMed  Google Scholar 

  50. Cecelja M, Jiang B, Spector TD, Chowienczyk P. Progression of central pulse pressure over 1 decade of aging and its reversal by nitroglycerin a twin study. J Am Coll Cardiol. 2012;59(5):475–83.

    Article  CAS  PubMed  Google Scholar 

  51. Mitchell GF. Impedance progress: aortic diameter rears its head again? Hypertension. 2007;49(6):1207–9.

    Article  CAS  PubMed  Google Scholar 

  52. Van de Laar RJJ, Stehouwer CDA, van Bussel BCT, Prins MH, Twisk JWR, Ferreira I. Adherence to a Mediterranean dietary pattern in early life is associated with lower arterial stiffness in adulthood: the Amsterdam Growth and Health Longitudinal Study. J Intern Med. 2013;273(1):79–93.

    Article  PubMed  Google Scholar 

  53. Cooper JN, Buchanich JM, Youk A, Brooks MM, Barinas-Mitchell E, Conroy MB, et al. Reductions in arterial stiffness with weight loss in overweight and obese young adults: potential mechanisms. Atherosclerosis. 2012;223(2):485–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR, et al. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension. 2012;60(5):1200–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102(12):1351–7.

    Article  CAS  PubMed  Google Scholar 

  56. Austin BA, Popovic ZB, Kwon DH, Thamilarasan M, Boonyasirinant T, Flamm SD, et al. Aortic stiffness independently predicts exercise capacity in hypertrophic cardiomyopathy: a multimodality imaging study. Heart. 2010;96(16):1303–10.

    Article  PubMed  Google Scholar 

  57. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102(11):1270–5.

    Article  CAS  PubMed  Google Scholar 

  58. Seals DR, Desouza CA, Donato AJ, Tanaka H. Habitual exercise and arterial aging. J Appl Physiol Soc. 2008;105(4):1323–32.

    Article  Google Scholar 

  59. Kearney TM, Murphy MH, Davison GW, O’Kane MJ, Gallagher AM. Accumulated brisk walking reduces arterial stiffness in overweight adults: evidence from a randomised control trial. J Am Soc Hypertens. 2014;8(2):117–26.

    Article  PubMed  Google Scholar 

  60. Heckman GA, McKelvie RS. Cardiovascular aging and exercise in healthy older adults. Clin J Sport Med. 2008;18(6):479–85.

    Article  PubMed  Google Scholar 

  61. d’Alessio P. Aging and the endothelium. Exp Gerontol. 2004;39(2):165–71.

    Article  PubMed  Google Scholar 

  62. Mackenzie IS, McEniery CM, Dhakam Z, Brown MJ, Cockcroft JR, Wilkinson IB. Comparison of the effects of antihypertensive agents on central blood pressure and arterial stiffness in isolated systolic hypertension. Hypertension. 2009;54(2):409–13.

    Article  CAS  PubMed  Google Scholar 

  63. Morgan T, Lauri J, Bertram D, Anderson A. Effect of different antihypertensive drug classes on central aortic pressure. Am J Hypertens. 2004;17(2):118–23.

    Article  CAS  PubMed  Google Scholar 

  64. Asmar RG, London GM, O’Rourke ME, Safar ME. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: a comparison with atenolol. Hypertension. 2001;38(4):922–6.

    Article  CAS  PubMed  Google Scholar 

  65. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–25.

    Article  CAS  PubMed  Google Scholar 

  66. Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359(9311):995–1003.

    Article  PubMed  Google Scholar 

  67. Benetos A, Vasmant D, Thiéry P, Safar M. Effects of ramipril on arterial hemodynamics. J Cardiovasc Pharmacol. 1991;18 Suppl 2:S153–6.

    Article  PubMed  Google Scholar 

  68. Safar ME, Jankowski P. Antihypertensive therapy and de-stiffening of the arteries. Expert Opin Pharmacother. Informa UK, Ltd. London; 2010;11(16):2625–34.

    Google Scholar 

  69. Mitchell GF, Dunlap ME, Warnica W, Ducharme A, Arnold JMO, Tardif J-C, et al. Long-term trandolapril treatment is associated with reduced aortic stiffness: the prevention of events with angiotensin-converting enzyme inhibition hemodynamic substudy. Hypertension. 2007;49(6):1271–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Raison J, Rudnichi A, Safar ME. Effects of atorvastatin on aortic pulse wave velocity in patients with hypertension and hypercholesterolaemia: a preliminary study. J Hum Hypertens. 2002;16(10):705–10.

    Article  CAS  PubMed  Google Scholar 

  71. Ott C, Schneider MP, Schlaich MP, Schmieder RE. Rosuvastatin improves pulse wave reflection by restoring endothelial function. Microvasc Res. 2012;84(1):60–4.

    Article  CAS  PubMed  Google Scholar 

  72. Tousoulis D, Oikonomou E, Siasos G, Chrysohoou C, Zaromitidou M, Kioufis S, et al. Dose-dependent effects of short term atorvastatin treatment on arterial wall properties and on indices of left ventricular remodeling in ischemic heart failure. Atherosclerosis. 2013;227(2):367–72.

    Article  CAS  PubMed  Google Scholar 

  73. Farrar DJ, Bond MG, Riley WA, Sawyer JK. Anatomic correlates of aortic pulse wave velocity and carotid artery elasticity during atherosclerosis progression and regression in monkeys. Circulation. 1991;83(5):1754–63.

    Article  CAS  PubMed  Google Scholar 

  74. Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009;54(6):1328–36.

    Article  CAS  PubMed  Google Scholar 

  75. Bakris GL, Bank AJ, Kass DA, Neutel JM, Preston RA, Oparil S. Advanced glycation end-product cross-link breakers. A novel approach to cardiovascular pathologies related to the aging process. Am J Hypertens. 2004;17(12 Pt 2):23S–30.

    Article  CAS  PubMed  Google Scholar 

  76. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.

    Article  CAS  PubMed  Google Scholar 

  77. Wang M, Zhang J, Telljohann R, Jiang L, Wu J, Monticone RE, et al. Chronic matrix metalloproteinase inhibition retards age-associated arterial proinflammation and increase in blood pressure. Hypertension. 2012;60(2):459–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Wang M, Zhang J, Spinetti G, Jiang L-Q, Monticone R, Zhao D, et al. Angiotensin II activates matrix metalloproteinase type II and mimics age-associated carotid arterial remodeling in young rats. Am J Pathol. 2005;167(5):1429–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward G. Lakatta MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

AlGhatrif, M., Lakatta, E.G. (2014). The Reality of Aging Viewed from the Arterial Wall. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics