Skip to main content

Technical Principles of Computed Tomographic Angiography for Adult Congenital Heart Disease

  • Chapter
  • First Online:
CT Atlas of Adult Congenital Heart Disease

Abstract

The computed tomographic angiography (CTA) imaging protocol must be tailored to the suspected cardiac lesion and the type of prior surgical repair. The relevant parameters that need to be selected prior to imaging are contrast volume, contrast injection speed, the timing of the scan, slice collimation, scan length, tube voltage (kV), tube current (mA), and pitch. In addition, the imager must decide on the use of non-ECG-synchronized acquisition versus ECG synchronization (prospective or retrospective). In general, multidetector scanner with ≥64 rows is preferred for evaluation of congenital heart disease (CHD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yalonetsky S, Horlick EM, Osten MD, Benson LN, Oechslin EN, Silversides CK. Clinical characteristics of coronary artery disease in adults with congenital heart defects. Int J Cardiol. 2011. doi:10.1016/j.ijcard.2011.07.021.

    Google Scholar 

  2. Stulak JM, Dearani JA, Burkhart HM, Ammash NM, Phillips SD, Schaff HV. Coronary artery disease in adult congenital heart disease: outcome after coronary artery bypass grafting. Ann Thorac Surg. 2012;93:116–22. doi:10.1016/j.athoracsur.2011.09.013; discussion 122–3.

    Article  PubMed  Google Scholar 

  3. Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301:500–7. doi:10.1001/jama.2009.54.

    Article  PubMed  CAS  Google Scholar 

  4. Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation. 2006;113:1305–10. doi:10.1161/CIRCULATIONAHA.105.602490.

    Article  PubMed  Google Scholar 

  5. Leschka S, Scheffel H, Desbiolles L, Plass A, Gaemperli O, Valenta I, et al. Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing. Invest Radiol. 2007;42:543–9. doi:10.1097/RLI.0b013e31803b93cf.

    Article  PubMed  Google Scholar 

  6. Weustink AC, Mollet NR, Pugliese F, Meijboom WB, Nieman K, Heijenbrok-Kal MH, et al. Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology. 2008;248:792–8. doi:10.1148/radiol.2483072098.

    Article  PubMed  Google Scholar 

  7. Bischoff B, Hein F, Meyer T, Hadamitzky M, Martinoff S, Schomig A, et al. Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC Cardiovasc Imaging. 2009;2:940–6. doi:10.1016/j.jcmg.2009.02.015.

    Article  PubMed  Google Scholar 

  8. Suess C, Chen X. Dose optimization in pediatric CT: current technology and future innovations. Pediatr Radiol. 2002;32:729–34. doi:10.1007/s00247-002-0800-x; discussion 751–4.

    Article  PubMed  Google Scholar 

  9. Achenbach S, Goroll T, Seltmann M, Pflederer T, Anders K, Ropers D, et al. Detection of coronary artery stenoses by low-dose, prospectively ECG-triggered, high-pitch spiral coronary CT angiography. JACC Cardiovasc Imaging. 2011;4:328–37.

    Article  PubMed  Google Scholar 

  10. Goetti R, Baumuller S, Feuchtner G, Stolzmann P, Karlo C, Alkadhi H, et al. High-pitch dual-source CT angiography of the thoracic and abdominal aorta: is simultaneous coronary artery assessment possible? AJR Am J Roentgenol. 2010;194:938–44. doi:10.2214/AJR.09.3482.

    Article  PubMed  Google Scholar 

  11. Goo HW, Yang DH. Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan. Pediatr Radiol. 2010;40:1670–80.

    Article  PubMed  Google Scholar 

  12. Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, et al. Society of Cardiovascular Computed Tomography. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5:198–224. doi:10.1016/j.jcct.2011.06.001.

    Article  PubMed  Google Scholar 

  13. Maruyama T, Takada M, Hasuike T, Yoshikawa A, Namimatsu E, Yoshizumi T. Radiation dose reduction and coronary assessability of prospective electrocardiogram-gated computed tomography coronary angiography: comparison with retrospective electrocardiogram-gated helical scan. J Am Coll Cardiol. 2008;52:1450–5. doi:10.1016/j.jacc.2008.07.048.

    Article  PubMed  Google Scholar 

  14. Labounty TM, Leipsic J, Min JK, Heilbron B, Mancini GB, Lin FY, et al. Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. AJR Am J Roentgenol. 2010;194:933–7. doi:10.2214/AJR.09.3371.

    Article  PubMed  Google Scholar 

  15. Leipsic J, Labounty TM, Heilbron B, Min JK, Mancini GB, Lin FY, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol. 2010;195:655–60. doi:10.2214/AJR.10.4288.

    Article  PubMed  Google Scholar 

  16. Renker M, Ramachandra A, Schoepf UJ, Raupach R, Apfaltrer P, Rowe GW, et al. Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr. 2011;5:225–30. doi:10.1016/j.jcct.2011.05.002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mazur, W., Siegel, M.J., Miszalski-Jamka, T., Pelberg, R. (2013). Technical Principles of Computed Tomographic Angiography for Adult Congenital Heart Disease. In: CT Atlas of Adult Congenital Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-5088-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5088-6_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5087-9

  • Online ISBN: 978-1-4471-5088-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics