Skip to main content

Diffusion-Based Models for Financial Markets Without Martingale Measures

  • Chapter
Risk Measures and Attitudes

Part of the book series: EAA Series ((EAAS))

Abstract

In this paper we consider a general class of diffusion-based models and show that, even in the absence of an Equivalent Local Martingale Measure, the financial market may still be viable, in the sense that strong forms of arbitrage are excluded and portfolio optimisation problems can be meaningfully solved. Relying partly on the recent literature, we provide necessary and sufficient conditions for market viability in terms of the market price of risk process and martingale deflators. Regardless of the existence of a martingale measure, we show that the financial market may still be complete and contingent claims can be valued under the original (real-world) probability measure, provided that we use as numéraire the Growth-Optimal Portfolio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth pointing out that, if Assumption 4.2.1 does not hold but condition (4.6) is satisfied, i.e. we have \(\mu_{t}-r_{t}\mathbf{1}\in\mathcal {R} (\sigma_{t} )\) P-a.e., then the market price of risk process θ can still be defined by replacing \(\sigma_{t}' (\sigma_{t}\,\sigma_{t}' )^{-1}\) with the Moore–Penrose pseudoinverse of the matrix σ t .

  2. 2.

    The (NUPBR) condition has been introduced under that name in Karatzas and Kardaras (2007). However, the condition that the set \(\{ \bar{V}^{\,\pi}_{T}:\pi\in\mathcal{A} \}\) be bounded in probability also plays a key role in the seminal work Delbaen and Schachermayer (1994), and its implications have been systematically studied in Kabanov (1997), where the same condition is denoted as “property BK”.

  3. 3.

    We want to remark that an analogous result has already been given in Theorem 2 of Loewenstein and Willard (2000) under the assumption of a complete financial market.

  4. 4.

    More precisely, note that the process \((\int_{0}^{t}\theta_{u}^{2}\,du )_{0\leq t \leq T}= (\int_{0}^{t}\frac{1}{u}\,du )_{0\leq t \leq T}\) jumps to infinity instantaneously at t=0. Hence, as explained in Remark 4.3.12, the model considered in the present example allows not only for arbitrages of the first kind, but also for strong arbitrage opportunities. Of course, there are instances where strong arbitrage opportunities are precluded, but still there exist arbitrages of the first kind. We refer the interested reader to Ball and Torous (1983) for an example of such a model, where the price of a risky asset is modelled as the exponential of a Brownian bridge (see also Loewenstein and Willard 2000, Example 3.1).

  5. 5.

    Alternatively, one can show that the probability measures Q and P fail to be equivalent by arguing as follows. Let us define the stopping time τ:=inf{t∈[0,T]:S t =0}. The process S=(S t )0≤tT is a Bessel process of dimension three under P, and, hence, we have P(τ<∞)=0. However, since the process S=(S t )0≤tT is a Q-Brownian motion, we clearly have Q(τ<∞)>0. This contradicts the assumption that Q and P are equivalent.

  6. 6.

    In Galesso and Runggaldier (2010) and Platen and Runggaldier (2007) the authors generalise Definition 4.6.12 to an arbitrary time t∈[0,T]. However, since the results and the techniques remain essentially unchanged, we only consider the basic case t=0.

References

  • Ansel, J. P., & Stricker, C. (1992). Lois de martingale, densités et décomposition de Föllmer Schweizer. Annales de l’Institut Henri Poincaré (B), 28(3), 375–392.

    MathSciNet  MATH  Google Scholar 

  • Ansel, J. P., & Stricker, C. (1993a). Décomposition de Kunita-Watanabe. In Séminaire de probabilités XXVII (pp. 30–32).

    Chapter  Google Scholar 

  • Ansel, J. P., & Stricker, C. (1993b). Unicité et existence de la loi minimale. In Séminaire de probabilités XXVII (pp. 22–29).

    Chapter  Google Scholar 

  • Ball, C. A., & Torous, W. N. (1983). Bond price dynamics and options. Journal of Financial and Quantitative Analysis, 18(4), 517–531.

    Article  Google Scholar 

  • Becherer, D. (2001). The numeraire portfolio for unbounded semimartingales. Finance and Stochastics, 5, 327–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Bruti-Liberati, N., Nikitopoulos-Sklibosios, C., & Platen, E. (2010). Real-world jump-diffusion term structure models. Quantitative Finance, 10(1), 23–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Christensen, M. M., & Larsen, K. (2007). No arbitrage and the growth optimal portfolio. Stochastic Analysis and Applications, 25, 255–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, A. M. G., & Hobson, D. G. (2005). Local martingales, bubbles and options prices. Finance and Stochastics, 9, 477–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, M. H. A. (1997). Option pricing in incomplete markets. In M. A. H. Dempster & S. R. Pliska (Eds.), Mathematics of derivative securities (pp. 227–254). Cambridge: Cambridge University Press.

    Google Scholar 

  • Delbaen, F., & Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Mathematische Annalen, 300, 463–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Delbaen, F., & Schachermayer, W. (1995a). Arbitrage possibilities in Bessel processes and their relations to local martingales. Probability Theory and Related Fields, 102, 357–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Delbaen, F., & Schachermayer, W. (1995b). The existence of absolutely continuous local martingale measures. Annals of Applied Probability, 5(4), 926–945.

    Article  MathSciNet  MATH  Google Scholar 

  • Delbaen, F., & Schachermayer, W. (2006). The mathematics of arbitrage. Berlin: Springer.

    MATH  Google Scholar 

  • Fernholz, R., & Karatzas, I. (2009). Stochastic portfolio theory: an overview. In A. Bensoussan & Q. Zhang (Eds.), Handbook of numerical analysis: Vol. XV. Mathematical Modeling and Numerical Methods in Finance (pp. 89–167). Oxford: North-Holland.

    Google Scholar 

  • Fontana, C. (2012). Four essays in financial mathematics. Ph.D. thesis, University of Padova.

    Google Scholar 

  • Galesso, G., & Runggaldier, W. (2010). Pricing without equivalent martingale measures under complete and incomplete observation. In C. Chiarella & A. Novikov (Eds.), Contemporary quantitative finance: essays in honour of Eckhard Platen (pp. 99–121). Berlin: Springer.

    Chapter  Google Scholar 

  • Heston, S. L., Loewenstein, M., & Willard, G. A. (2007). Options and bubbles. The Review of Financial Studies, 20(2), 359–390.

    Article  Google Scholar 

  • Hulley, H. (2010). The economic plausibility of strict local martingales in financial modelling. In C. Chiarella & A. Novikov (Eds.), Contemporary quantitative finance: essays in honour of Eckhard Platen (pp. 53–75). Berlin: Springer.

    Chapter  Google Scholar 

  • Hulley, H., & Schweizer, M. (2010). M6—on minimal market models and minimal martingale measures. In C. Chiarella & A. Novikov (Eds.), Contemporary quantitative finance: essays in honour of Eckhard Platen (pp. 35–51). Berlin: Springer.

    Chapter  Google Scholar 

  • Jarrow, R. A., & Madan, D. B. (1999). Hedging contingent claims on semimartingales. Finance and Stochastics, 3, 111–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Jarrow, R. A., Protter, P., & Shimbo, K. (2007). Asset price bubbles in complete markets. In M. C. Fu, R. A. Jarrow, J. Y. J. Yen, & R. J. Elliott (Eds.), Advances in mathematical finance (pp. 97–122). Boston: Birkhäuser.

    Chapter  Google Scholar 

  • Jarrow, R. A., Protter, P., & Shimbo, K. (2010). Asset price bubbles in incomplete markets. Mathematical Finance, 20(2), 145–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Kabanov, Y. (1997). On the ftap of Kreps-Delbaen-Schachermayer. In Y. Kabanov, B. L. Rozovskii, & A. N. Shiryaev (Eds.), Statistics and control of stochastic processes: the Liptser festschrift (pp. 191–203). Singapore: World Scientific.

    Google Scholar 

  • Karatzas, I., & Kardaras, K. (2007). The numeraire portfolio in semimartingale financial models. Finance and Stochastics, 11, 447–493.

    Article  MathSciNet  MATH  Google Scholar 

  • Karatzas, I., & Shreve, S. E. (1991). Brownian motion and stochastic calculus (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Karatzas, I., & Shreve, S. E. (1998). Methods of mathematical finance. New York: Springer.

    MATH  Google Scholar 

  • Kardaras, C. (2010). Finitely additive probabilities and the fundamental theorem of asset pricing. In C. Chiarella & A. Novikov (Eds.), Contemporary quantitative finance: essays in honour of Eckhard Platen (pp. 19–34). Berlin: Springer.

    Chapter  Google Scholar 

  • Kardaras, C. (2012). Market viability via absence of arbitrage of the first kind. Finance and Stochastics, 16, 651–667.

    Article  MathSciNet  MATH  Google Scholar 

  • Levental, S., & Skorohod, A. S. (1995). A necessary and sufficient condition for absence of arbitrage with tame portfolios. Annals of Applied Probability, 5(4), 906–925.

    Article  MathSciNet  MATH  Google Scholar 

  • Loewenstein, M., & Willard, G. A. (2000). Local martingales, arbitrage, and viability: free snacks and cheap thrills. Economic Theory, 16(1), 135–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Londono, J. A. (2004). State tameness: a new approach for credit constraints. Electronic Communications in Probability, 9, 1–13.

    Article  MathSciNet  Google Scholar 

  • MacLean, L. C., Thorp, E. O., & Ziemba, W. T. (2010). Long-term capital growth: the good and bad properties of the Kelly and fractional Kelly capital growth criteria. Quantitative Finance, 10(7), 681–687.

    Article  MathSciNet  Google Scholar 

  • Platen, E. (2002). Arbitrage in continuous complete markets. Advances in Applied Probability, 34, 540–558.

    Article  MathSciNet  MATH  Google Scholar 

  • Platen, E. (2006). A benchmark approach to finance. Mathematical Finance, 16(1), 131–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Platen, E. (2011). A benchmark approach to investing and pricing. In L. C. MacLean, E. O. Thorp, & W. T. Ziemba (Eds.), The Kelly capital growth investment criterion (pp. 409–427). Singapore: World Scientific.

    Google Scholar 

  • Platen, E., & Heath, D. (2006). A benchmark approach to quantitative finance. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Platen, E., & Runggaldier, W. J. (2005). A benchmark approach to filtering in finance. Asia-Pacific Financial Markets, 11, 79–105.

    Article  Google Scholar 

  • Platen, E., & Runggaldier, W. J. (2007). A benchmark approach to portfolio optimization under partial information. Asia-Pacific Financial Markets, 14, 25–43.

    Article  MATH  Google Scholar 

  • Revuz, D., & Yor, M. (1999). Continuous martingales and Brownian motion (3rd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Ruf, J. (2012). Hedging under arbitrage. Mathematical Finance, to appear.

    Google Scholar 

  • Schweizer, M. (1992). Martingale densities for general asset prices. Journal of Mathematical Economics, 21, 363–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Schweizer, M. (1995). On the minimal martingale measure and the Fllmer-Schweizer decomposition. Stochastic Analysis and Applications, 13, 573–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Strasser, E. (2005). Characterization of arbitrage-free markets. Annals of Applied Probability, 15(1A), 116–124.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work has been inspired by a series of research seminars organised by the second author at the Department of Mathematics of the Ludwig-Maximilians-Universität München during the Fall Semester 2009. The first author gratefully acknowledges financial support from the “Nicola Bruti-Liberati” scholarship for studies in Quantitative Finance. We thank an anonymous referee for the careful reading and for several comments that contributed to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Fontana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Fontana, C., Runggaldier, W.J. (2013). Diffusion-Based Models for Financial Markets Without Martingale Measures. In: Biagini, F., Richter, A., Schlesinger, H. (eds) Risk Measures and Attitudes. EAA Series. Springer, London. https://doi.org/10.1007/978-1-4471-4926-2_4

Download citation

Publish with us

Policies and ethics