Skip to main content

Recent Development of Non-precious Metal Catalysts

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

The development of high-performance non-precious metal catalysts (NPMC) for use at the cathode of polymer electrolyte membrane fuel cells will provide immense economic advantages over the current platinum-based catalyst technologies, perpetuating the sustainable widespread commercialization of these devices. It is imperative to develop NPMC that can effectively combine excellent oxygen reduction activities, high catalyst utilization, and long-term operational durability. This chapter focuses on recent advances made in the past 3–4 years and research trends in this field, with a particular focus on pyrolyzed carbon-supported nitrogen-coordinated transition metal (Fe and/or Co) complexes which have high potential of replacing conventional platinum-based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James D, Kalinoski J (2010) Mass production cost estimation for direct H2 PEM fuel cell systems for automotive applications: 2010 update. http://www1.eere.energy.gov/hydrogenand fuelcells/pdfs/dti_80kwW_fc_system_cost_analysis_report_2010.pdf

  2. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    Article  Google Scholar 

  3. Higgins D, Chen Z, Chen Z (2011) Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for oxygen reduction reaction. Electrochim Acta 56:1570–1575

    Article  Google Scholar 

  4. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    Article  Google Scholar 

  5. Chen Z, Higgins D, Tao H, Hsu R, Chen Z (2009) Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications. J Phys Chem C 113(49):21008–21013

    Article  Google Scholar 

  6. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107):63–66

    Article  Google Scholar 

  7. Sulub R, Martinez-Millan W, Smit MA (2009) Study of the catalytic activity for oxygen reduction of polythiophene modified with cobalt or nickel. Int J Electrochem Sci 4(7):1015–1027

    Google Scholar 

  8. Feng YJ, He T, Alonso-Vante N (2009) Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium. Electrochim Acta 54(22):5252–5256

    Article  Google Scholar 

  9. Feng YJ, He T, Alonso-Vante N (2010) Carbon-supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium. Fuel Cells 10(1):77–83

    Google Scholar 

  10. Lee K, Zhang L, Zhang JJ (2007) Ternary non-noble metal chalcogenide (W-Co-Se) as electrocatalyst for oxygen reduction reaction. Electrochem Commun 9(7):1704–1708

    Article  MathSciNet  Google Scholar 

  11. Ishihara A, Ohgi Y, Matsuzawa K, Mitsushima S, Ota K (2010) Progress in non-precious metal oxide-based cathode for polymer electrolyte fuel cells. Electrochim Acta 55(27):8005–8012

    Article  Google Scholar 

  12. DOE (2011) Technical plan – fuel cells. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

  13. Othman R, Dicks AL, Zhu Z (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrogen Energy 37(1):357–372

    Article  Google Scholar 

  14. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P (2010) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  Google Scholar 

  15. Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4(9):3167–3192

    Article  Google Scholar 

  16. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35

    Article  Google Scholar 

  17. Gasteiger HA, Markovic NM (2009) Just a dream – or future reality? Science 324(5923):48–49

    Article  Google Scholar 

  18. Jasinski R (1964) New fuel cell cathode catalyst. Nature 201(492):1212–1213

    Article  Google Scholar 

  19. Alt H, Binder H, Sandsted G (1973) Mechanism of electrocatalytic reduction of oxygen on metal-chelates. J Catal 28(1):8–19

    Article  Google Scholar 

  20. Gruenig G, Wiesener K, Gamburzev S, Iliev I, Kaisheva A (1983) Investigations of catalysts from the pyrolyzates of cobalt-containing and metal-free dibenzotetraazaannulenes on active-carbon for oxygen electrodes in an acid-medium. J Electroanal Chem 159(1):155–162

    Article  Google Scholar 

  21. Franke R, Ohms D, Wiesener K (1989) Investigation of the influence of thermal-treatment on the properties of carbon materials modified by N-4-chelates for the reduction of oxygen in acidic media. J Electroanal Chem 260(1):63–73

    Article  Google Scholar 

  22. van der Putten A, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on pyrolyzed carbon-supported transition-metal chelates. J Electroanal Chem 205(1–2):233–244

    Google Scholar 

  23. Gupta S, Tryk D, Bae I, Aldred W, Yeager E (1989) Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J Appl Electrochem 19(1):19–27

    Article  Google Scholar 

  24. Jaouen F, Dodelet JP (2007) Non-noble electrocatalysts for O2 reduction: how does heat treatment affect their activity and structure? Part I. Model for carbon black gasification by NH3: parametric calibration and electrochemical validation. J Phys Chem C 111(16):5963–5970

    Article  Google Scholar 

  25. Jaouen F, Lefevre M, Dodelet JP, Cai M (2006) Heat-treated Fe/N/C catalysts for O2 electroreduction: are active sites hosted in micropores? J Phys Chem B 110(11):5553–5558

    Article  Google Scholar 

  26. Jaouen F, Serventi AM, Lefevre M, Dodelet JP, Bertrand P (2007) Non-noble electrocatalysts for O2 reduction: how does heat treatment affect their activity and structure? Part II. Structural changes observed by electron microscopy, Raman, and mass spectroscopy. J Phys Chem C 111(16):5971–5976

    Article  Google Scholar 

  27. Charreteur F, Jaouen F, Ruggeri S, Dodelet JP (2008) Fe/N/C non-precious catalysts for PEM fuel cells: influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim Acta 53(6):2925–2938

    Article  Google Scholar 

  28. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  Google Scholar 

  29. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443

    Article  Google Scholar 

  30. Wu L, Nabae Y, Moriya S, Matsubayashi K, Islam NM, Kuroki S, Kakimoto M, Ozaki J, Miyata S (2010) Pt-free cathode catalysts prepared via multi-step pyrolysis of Fe phthalocyanine and phenolic resin for fuel cells. Chem Commun (Camb) 46(34):6377–6379

    Article  Google Scholar 

  31. Liu G, Li XG, Ganesan P, Popov BN (2009) Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B Environ 93(1–2):156–165

    Article  Google Scholar 

  32. Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J-C, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7(6):394–400

    Article  Google Scholar 

  33. Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239(1):83–96

    Article  Google Scholar 

  34. Ikeda T, Boero M, Huang S-F, Terakura K, Oshima M, Ozaki J-i (2008) Carbon alloy catalysts: active sites for oxygen reduction reaction. J Phys Chem C 112(38):14706–14709

    Article  Google Scholar 

  35. Choi CH, Park SH, Woo SI (2012) Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano. doi:10.1021/nn3021234

  36. Nabae Y, Moriya S, Matsubayashi K, Lyth SM, Malon M, Wu LB, Islam NM, Koshigoe Y, Kuroki S, Kakimoto MA, Miyata S, Ozaki J (2010) The role of Fe species in the pyrolysis of Fe phthalocyanine and phenolic resin for preparation of carbon-based cathode catalysts. Carbon 48(9):2613–2624

    Article  Google Scholar 

  37. Ozaki J, Tanifuji S, Furuichi A, Yabutsuka K (2010) Enhancement of oxygen reduction activity of nanoshell carbons by introducing nitrogen atoms from metal phthalocyanines. Electrochim Acta 55(6):1864–1871

    Article  Google Scholar 

  38. Matter PH, Wang E, Millet JMM, Ozkan US (2007) Characterization of the iron phase in CNx-based oxygen reduction reaction catalysts. J Phys Chem C 111(3):1444–1450

    Article  Google Scholar 

  39. Li XG, Liu G, Popov BN (2010) Activity and stability of non-precious metal catalysts for oxygen reduction in acid and alkaline electrolytes. J Power Sources 195(19):6373–6378

    Article  Google Scholar 

  40. Bouwkamp-Wijnoltz AL, Visscher W, van Veen JAR, Boellaard E, van der Kraan AM, Tang SC (2002) On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: an in situ Mossbauer study. J Phys Chem B 106(50):12993–13001

    Article  Google Scholar 

  41. Tributsch H, Koslowski UI, Dorbandt I (2008) Experimental and theoretical modeling of Fe-, Co-, Cu-, Mn-based electrocatalysts for oxygen reduction. Electrochim Acta 53(5):2198–2209

    Article  Google Scholar 

  42. Kramm U, Abs-Wurmbach I, Herrmann-Geppert I, Radnik J, Fiechter S, Bogdanoff P (2011) Influence of the electron-density of FeN-centers towards the catalytic activity of pyrolyzed FeTMPPCl-based ORR-electrocatalysts. J Electrochem Soc 158:B69–B78

    Article  Google Scholar 

  43. Olson TS, Pylypenko S, Fulghum JE, Atanassov P (2010) Bifunctional oxygen reduction reaction mechanism on non-platinum catalysts derived from pyrolyzed porphyrins. J Electrochem Soc 157:B54–B63

    Article  Google Scholar 

  44. Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet J-P (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416–425

    Article  Google Scholar 

  45. Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136

    Article  Google Scholar 

  46. Baker R, Wilkinson DP, Zhang JJ (2008) Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53(23):6906–6919

    Article  Google Scholar 

  47. Zagal JH, Ponce I, Baez D, Venegas R, Pavez J, Paez M, Gulppi M (2012) A possible interpretation for the high catalytic activity of heat-treated non-precious metal Nx/C catalysts for O2 reduction in terms of their formal potentials. Electrochem Solid State Lett 15(6):B90–B92

    Article  Google Scholar 

  48. Kramm U, Herranz J, Larouche N, Arruda T, Lefevre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Mukerjee S, Dodelet JP (2012) Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys Chem Chem Phys. doi:10.1039/c1030xx00000x

  49. Soboleva T, Zhao X, Malek K, Xie Z, Navessin T, Holdcroft S (2010) On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers. ACS Appl Mater Interfaces 2(2):375–384

    Article  Google Scholar 

  50. Ignaszak A, Ye S, Gyenge E (2008) A study of the catalytic interface for O2 electroreduction on Pt: the interaction between carbon support meso/microstructure and ionomer (Nafion) distribution. J Phys Chem C 113(1):298–307

    Article  Google Scholar 

  51. Choi J, Hsu R, Chen Z (2010) Highly active porous carbon-supported nonprecious metal-N electrocatalyst for oxygen reduction reaction in PEM fuel cells. J Phys Chem C 114(17):8048–8053

    Article  Google Scholar 

  52. Huang H-C, Shown I, Chang S-T, Hsu H-C, Du H-Y, Kuo M-C, Wong K-T, Wang S-F, Wang C-H, Chen L-C, Chen K-H (2012) Pyrolyzed cobalt corrole as a potential non-precious catalyst for fuel cells. Adv Funct Mater. doi:10.1002/adfm.201200264

  53. Liu G, Li XG, Ganesan P, Popov BN (2010) Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochim Acta 55(8):2853–2858

    Article  Google Scholar 

  54. Garsuch A, Dahn T, Klepel O, Garsuch RR, Dahn JR (2008) Oxygen reduction behavior of highly porous non-noble metal catalysts prepared by a template-assisted synthesis route. J Electrochem Soc 155:B236–B243

    Article  Google Scholar 

  55. Garsuch A, MacIntyre K, Michaud X, Stevens DA, Dahn JR (2008) Fuel cell studies on a non-noble metal catalyst prepared by a template-assisted synthesis route. J Electrochem Soc 155(9):B953–B957

    Article  Google Scholar 

  56. Liu HS, Shi Z, Zhang JL, Zhang L, Zhang JJ (2009) Ultrasonic spray pyrolyzed iron-polypyrrole mesoporous spheres for fuel cell oxygen reduction electrocatalysts. J Mater Chem 19(4):468–470

    Article  MathSciNet  Google Scholar 

  57. Serov A, Robson MH, Smolnik M, Atanassov P (2012) Templated bi-metallic non-PGM catalysts for oxygen reduction. Electrochim Acta. doi:10.1016/j.electacta.2012.1007.1008

  58. Wang XQ, Lee JS, Zhu Q, Liu J, Wang Y, Dai S (2010) Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem Mater 22(7):2178–2180

    Article  Google Scholar 

  59. Herrmann I, Kramm U, Fiechter S, Bogdanoff P (2009) Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochim Acta 54(18):4275–4287

    Article  Google Scholar 

  60. Xie J, Xu F, Wood Iii DL, More KL, Zawodzinski TA, Smith WH (2010) Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies. Electrochim Acta 55(24):7404–7412

    Article  Google Scholar 

  61. Liu Y, Ji C, Gu W, Baker DR, Jorne J, Gasteiger HA (2010) Proton conduction in PEM fuel cell cathodes: effects of electrode thickness and ionomer equivalent weight. J Electrochem Soc 157(8):B1154–B1162

    Article  Google Scholar 

  62. Li W, Yu A, Higgins DC, Llanos BG, Chen Z (2010) Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Am Chem Soc 132:17056–17058

    Article  Google Scholar 

  63. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951

    Article  Google Scholar 

  64. Li S, Zhang L, Kim J, Pan M, Shi Z, Zhang J (2010) Synthesis of carbon-supported binary FeCo-N non-noble metal electrocatalysts for the oxygen reduction reaction. Electrochim Acta 55(24):7346–7353

    Article  Google Scholar 

  65. Wu G, Artyushkova K, Ferrandon M, Kropf AJ, Myers D, Zelenay P (2009) Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans 25(1):1299–1311

    Article  Google Scholar 

  66. Lefevre M, Dodelet JP (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48(19):2749–2760

    Article  Google Scholar 

  67. Koslowski UI, Abs-Wurmbach I, Fiechter S, Bogdanoff P (2008) Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: a correlation of kinetic current density with the site density of Fe-N-4 Centers. J Phys Chem C 112(39):15356–15366

    Article  Google Scholar 

  68. Charreteur F, Jaouen F, Dodelet JP (2009) Iron porphyrin-based cathode catalysts for PEM fuel cells: influence of pyrolysis gas on activity and stability. Electrochim Acta 54(26):6622–6630

    Article  Google Scholar 

  69. Schilling T, Bron M (2008) Oxygen reduction at Fe–N-modified multi-walled carbon nanotubes in acidic electrolyte. Electrochim Acta 53(16):5379–5385

    Article  Google Scholar 

  70. Byon HR, Suntivich J, Crumlin EJ, Shao-Horn Y (2011) Fe-N-modified multi-walled carbon nanotubes for oxygen reduction reaction in acid. Phys Chem Chem Phys 13(48):21437–21445

    Article  Google Scholar 

  71. Choi JY, Higgins D, Chen Z (2012) Highly durable graphene nanosheet supported iron catalyst for oxygen reduction reaction in PEM fuel cells. J Electrochem Soc 159:B87–B90

    Article  Google Scholar 

  72. Byon HR, Suntivich J, Shao-Horn Y (2011) Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem Mater 23(15):3421–3428

    Article  Google Scholar 

  73. Meng H, Larouche N, Lefèvre M, Jaouen F, Stansfield B, Dodelet J (2010) Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochim Acta 55(22):6450–6461

    Article  Google Scholar 

  74. Herranz J, Jaouen F, Lefèvre M, Kramm UI, Proietti E, Dodelet J-P, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda TM, Mukerjee S (2011) Unveiling N-protonation and anion-binding effects on Fe/N/C catalysts for O2 reduction in proton-exchange-membrane fuel cells. J Phys Chem C 115(32):16087–16097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Higgins, D., Chen, Z. (2013). Recent Development of Non-precious Metal Catalysts. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics