Skip to main content

Fundamental Studies on the Electrocatalytic Properties of Metal Macrocyclics and Other Complexes for the Electroreduction of O2

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

The high prospects of exploiting the oxygen reduction reaction (ORR) for lucrative technologies, for example, in the fuel cells industry, chlor-alkali electrolysis, and metal-air batteries, to name but a few, have prompted enormous research interest in the search for cost-effective and abundant catalysts for the electrocatalytic reduction of oxygen. This chapter describes and discusses the electrocatalysis of oxygen reduction by metallomacrocyclic complexes and the prospect of their potential to be used in fuel cells. Since the main interest of most researchers in this field is to design catalysts which can achieve facile reduction of O2 at a high thermodynamic efficiency, this chapter aims to bring to light the research frontiers uncovering important milestones towards the synthesis and design of promising metallomacrocyclic catalysts which can accomplish the four-electron reduction of O2 at low overpotential and to draw attention to the fundamental requirements for synthesis of improved catalysts. Particular attention has been paid to discussion of the common properties which cut across these complexes and how they may be aptly manipulated for tailored catalyst synthesis. Therefore, besides discussion of the progress attained with regard to synthesis and design of catalysts with high selectivity towards the four-electron reduction of O2, a major part of this chapter highlights quantitative structure–activity relationships (QSAR) which govern the activity and stability of these complexes, which when well understood, refined, and carefully implemented should lead to rational design of better catalysts. A brief discussion about nonmacrocyclic copper (I) complexes, particularly Cu(I) phenanthrolines, and those with a laccase-like structure which exhibit promising activity for ORR has been included in a separate section at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steele BC, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352

    Google Scholar 

  2. Lee J, Kim ST, Cao R, Choi N, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv Energy Mater 1(1):34–50

    Google Scholar 

  3. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35

    Google Scholar 

  4. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675

    Google Scholar 

  5. Min M (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45(25–26):4211–4217

    Google Scholar 

  6. Mazumder V, Lee Y, Sun S (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20(8):1224–1231

    Google Scholar 

  7. Sun Z, Masa J, Liu Z, Schuhmann MM (2012) Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chem Eur J 18:6972–6978

    Google Scholar 

  8. Jasinski R (1964) New fuel cell cathode catalyst. Nature 201(492):1212–1213

    Google Scholar 

  9. Jahnke H, Schönborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. In: Schäfer F, Gerischer H, Willig F, Meier H, Jahnke H, Schönborn M, Zimmermann G (eds) Physical and chemical applications of dyestuffs, vol 61. Springer, Heidelberg, pp 133–181

    Google Scholar 

  10. Alt H, Binder H, Sandstede G (1973) Mechanism of the electrocatalytic reduction of oxygen on metal chelates. J Catal 28(1):8–19

    Google Scholar 

  11. Kadish K (1984) Redox tuning of metalloporphyrin reactivity. J Electroanal Chem 168(1–2):261–274

    Google Scholar 

  12. Randin J (1974) Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction. Electrochim Acta 19(2):83–85

    Google Scholar 

  13. Richards G, Swavey S (2009) Electrooxidation of Fe, Co, Ni and Cu metalloporphyrins on edge-plane pyrolytic graphite electrodes and their electrocatalytic ability towards the reduction of molecular oxygen in acidic media. Eur J Inorg Chem 35:5367–5376

    Google Scholar 

  14. Zagal JH, Páez M, Tanaka A, dos Santos Jr JR, Linkous CA (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339(1–2):13–30

    Google Scholar 

  15. Vasudevan P, Santosh MN, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transit Met Chem 15(2):81–90

    Google Scholar 

  16. Yuasa M, Nishihara R, Shi C, Anson FC (2001) A comparison of several meso-tetraalkyl cobalt porphyrins as catalysts for the electroreduction of dioxygen. Polym Adv Technol 12(3–4):266–270

    Google Scholar 

  17. Song E, Shi C, Anson FC (1998) Comparison of the behavior of several cobalt porphyrins as electrocatalysts for the reduction of O2 at graphite electrodes. Langmuir 14(15):4315–4321

    Google Scholar 

  18. Ozer D, Harth R, Mor U, Bettelheim A (1989) Electrochemistry of various substituted aminophenyl iron porphyrins: Part II. Catalytic reduction of dioxygen by electropolymerized films. J Electroanal Chem 266(1):109–123

    Google Scholar 

  19. Bettelheim A, Ozer D, Harth R, Murray RW (1989) Electrochemistry of various substituted aminophenyl iron porphyrins: Part I. Redox properties of dissolved, adsorbed and electropolymerized species. J Electroanal Chem 266(1):93–108

    Google Scholar 

  20. van der Putten A, Elzing A, Visscher W, Barendrecht E (1987) Redox potential and electrocatalysis of O2 reduction on transition metal chelates. J Electroanal Chem 221(1–2):95–104

    Google Scholar 

  21. Elzing A, van der Putten A, Visscher W, Barendrecht E (1986) The cathodic reduction of oxygen at cobalt phthalocyanine. Influence of electrode preparation on electrocatalysis. J Electroanal Chem 200(1–2):313–322

    Google Scholar 

  22. Beletskaya I, Tyurin VS, Tsivadze AY, Guilard R, Stern C (2009) Supramolecular chemistry of metalloporphyrins. Chem Rev 109(5):1659–1713

    Google Scholar 

  23. Tashiro K, Aida T (2007) Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem Soc Rev 36(2):189

    Google Scholar 

  24. Sun D, Tham FS, Reed CA, Chaker L, Boyd PD (2002) Supramolecular fullerene-porphyrin chemistry. fullerene complexation by metalated “Jaws Porphyrin” Hosts. J Am Chem Soc 124(23):6604–6612

    Google Scholar 

  25. NEC (2007) Advanced energy initiative, 2006. National Environmental Council for the President of the United States

    Google Scholar 

  26. Adzic R (1998) Recent advances in kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, NY, pp 197–237

    Google Scholar 

  27. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York, NY

    Google Scholar 

  28. Zagal JH, Bindra P, Yeager E (1980) A mechanistic study of O2 reduction on water soluble phthalocyanines adsorbed on graphite electrodes. J Electrochem Soc 127(7):1506

    Google Scholar 

  29. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495(2):134–145

    Google Scholar 

  30. Dobrzeniecka A, Zeradjanin A, Masa J, Puschhof A, Stroka J, Kulesza PJ, Schuhmann W (2013) Application of SECM in tracing of hydrogen peroxide at multicomponent non-noble electrocatalyst films for the oxygen reduction reaction. Catal Today 202:55–62

    Google Scholar 

  31. Okunola AO, Nagaiah TC, Chen X, Eckhard K, Schuhmann BM (2009) Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM). Electrochim Acta 54(22):4971–4978

    Google Scholar 

  32. Sánchez-Sánchez CM, Bard AJ (2009) Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. Anal Chem 81(19):8094–8100

    Google Scholar 

  33. Mezour MA, Cornut R, Hussien EM, Morin M, Mauzeroll J (2010) Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol − porphyrin monolayers on gold using SECM and nanoelectrodes. Langmuir 26(15):13000–13006

    Google Scholar 

  34. Sánchez-Sánchez CM, Rodríguez-López J, Bard AJ (2008) Scanning electrochemical microscopy. 60. Quantitative calibration of the SECM substrate generation/tip collection mode and its use for the study of the oxygen reduction mechanism. Anal Chem 80(9):3254–3260

    Google Scholar 

  35. Collman J, Ghosh S (2010) Recent applications of a synthetic model of cytochrome c. Inorg Chem 49(13):5798–5810

    Google Scholar 

  36. Kim E, Chufán EE, Kamaraj K, Karlin KD (2004) Synthetic models for heme − copper oxidases. Chem Rev 104(2):1077–1134

    Google Scholar 

  37. Collman J, Boulatov R, Sunderland CJ, Fu L (2004) Functional analogues of Cytochrome c oxidase, myoglobin, and hemoglobin. Chem Rev 104(2):561–588

    Google Scholar 

  38. Collman J, Devaraj NK, Decreau RA, Yang Y, Yan Y, Ebina W, Eberspacher TA, Chidsey CED (2007) A Cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315(5818):1565–1568

    Google Scholar 

  39. Boulatov R, Collman J, Shiryaeva IM, Sunderland CJ (2002) Functional analogues of the dioxygen reduction site in cytochrome oxidase: mechanistic aspects and possible effects of CuB. J Am Chem Soc 124(40):11923–11935

    Google Scholar 

  40. Chang CJ, Deng YQ, Shi CN, Chang CK, Anson FC, Nocera DG (2000) Electrocatalytic four-electron reduction of oxygen to water by a highly flexible cofacial cobalt bisporphyrin. Chem Commun 15:1355–1356

    Google Scholar 

  41. Collman J (1997) A functional model related to Cytochrome c oxidase and its electrocatalytic four-electron reduction of O2. Science 275(5302):949–951

    Google Scholar 

  42. Collman J, Elliott CM, Halbert TR, Tovrog BS (1977) Synthesis and characterization of “face-to-face” porphyrins (biometallic ligands/metal-metal interactions/electron spin resonance/dioxygen reduction/dinitrogen reduction). Proc Natl Acad Sci U S A 74(1):18–22

    Google Scholar 

  43. Collman J, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102(19):6027–6036

    Google Scholar 

  44. Shigehara K, Anson FC (1982) Electrocatalytic activity of three iron porphyrins in the reduction of dioxygen and hydrogen peroxide at graphite cathodes. J Phys Chem 86(14):2776–2783

    Google Scholar 

  45. Chang CK, Liu HY, Abdalmuhdi I (1984) Electroreduction of oxygen by pillared cobalt(II) cofacial diporphyrin catalysts. J Am Chem Soc 106(9):2725–2726

    Google Scholar 

  46. Shi C, Mak KW, Chan KS, Anson FC (1995) Enhancement by surfactants of the activity and stability of iridium octaethyl porphyrin as an electrocatalyst for the four-electron reduction of dioxygen. J Electroanal Chem 397(1–2):321–324

    Google Scholar 

  47. Collman J, Chng LL, Tyvoll DA (1995) Electrocatalytic Reduction of Dioxygen to Water by Iridium Porphyrins Adsorbed on Edge Plane Graphite Electrodes Inorg Chem 34(6):1311–1324

    Google Scholar 

  48. Chang CJ, Loh Z, Shi C, Anson FC, Nocera DG (2004) Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins. J Am Chem Soc 126(32):10013–10020

    Google Scholar 

  49. Liu HY, Abdalmuhdi I, Chang CK et al (1985) Catalysis of the electroreduction of dioxygen and hydrogen peroxide by an anthracene-linked dimeric cobalt porphyrin. J Phys Chem 89(4):665–670

    Google Scholar 

  50. Collman J, Wagenknecht PS, Hutchison JE (1994) Molecular catalysts for multielectron redox reactions of small molecules—the cofacial metallodiporphyrin approach. Angew Chem Int Ed 33(15–16):1537–1554

    Google Scholar 

  51. Durand RR, Bencosme CS, Collman J, Anson FC (1983) Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins. J Am Chem Soc 105(9):2710–2718

    Google Scholar 

  52. Anson FC, Shi C, Steiger B (1997) Novel multinuclear catalysts for the electroreduction of dioxygen directly to water. Acc Chem Res 30(11):437–444

    Google Scholar 

  53. Collman J, Hendricks NH, Kim K, Bencosme CS (1987) The role of Lewis acids in promoting the electrocatalytic four-electron reduction of dioxygen. Chem Commun (20):1537

    Google Scholar 

  54. Ni CL, Abdalmuhdi I, Chang CK, Anson FC (1987) Behavior of four anthracene-linked dimeric metalloporphyrins as electrocatalysts for the reduction of dioxygen. J Phys Chem 91(5):1158–1166

    Google Scholar 

  55. Collman J, Kim K (1986) Electrocatalytic four-electron reduction of dioxygen by iridium porphyrins adsorbed on graphite. J Am Chem Soc 108(24):7847–7849

    Google Scholar 

  56. Bouwkamp-Wijnoltz AL, Visscher W, van Veen J (1994) Oxygen reduction catalysed by carbon supported iridium-chelates. Electrochim Acta 39(11–12):1641–1645

    Google Scholar 

  57. Shi C, Steiger B, Yuasa M, Anson FC (1997) Electroreduction of O2 to H2O at unusually positive potentials catalyzed by the simplest of the cobalt porphyrins. Inorg Chem 36(20):4294–4295

    Google Scholar 

  58. Zagal JH, Griveau S, Ozoemena KI, Nyokong T, Bedioui F (2009) Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis. J Nanosci Nanotechnol 9(4):2201–2214

    Google Scholar 

  59. Okunola A, Kowalewska B, Bron M, Kulesza PJ, Schuhmann W (2009) Electrocatalytic reduction of oxygen at electropolymerized films of metalloporphyrins deposited onto multi-walled carbon nanotubes. Electrochim Acta 54(7):1954–1960

    Google Scholar 

  60. Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N (2010) Iron(II) tetrakis(diaquaplatinum)octacarboxyphthalocyanine supported on multi-walled carbon nanotube platform: an efficient functional material for enhancing electron transfer kinetics and electrocatalytic oxidation of formic acid. J Mater Chem 20(47):10705

    Google Scholar 

  61. Mamuru SA, Ozoemena KI (2010) Iron (II) tetrakis(diaquaplatinum) octacarboxyphthalocyanine supported on multi-walled carbon nanotubes as effective electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochem Commun 12(11):1539–1542

    Google Scholar 

  62. Xu Z, Li H, Cao G, Zhang Q, Li K, Zhao X (2011) Electrochemical performance of carbon nanotube-supported cobalt phthalocyanine and its nitrogen-rich derivatives for oxygen reduction. J Mol Catal A: Chem 335(1–2):89–96

    Google Scholar 

  63. Yuan Y, Zhao B, Jeon Y, Zhong S, Zhou S, Kim S (2011) Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Biores Technol 102(10):5849–5854

    Google Scholar 

  64. Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S (2011) Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 49(14):4839–4847

    Google Scholar 

  65. Mamuru SA, Ozoemena KI, Fukuda T, Kobayashi N, Nyokong T (2010) Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode. Electrochim Acta 55(22):6367–6375

    Google Scholar 

  66. Mamuru SA, Ozoemena KI (2010) Heterogeneous electron transfer and oxygen reduction reaction at nanostructured Iron(II) phthalocyanine and its MWCNTs nanocomposites. Electroanalysis 22(9):985–994

    Google Scholar 

  67. Maxakato NW, Mamuru SA, Ozoemena KI (2011) Efficient oxygen reduction reaction using ruthenium tetrakis(diaquaplatinum)octacarboxyphthalocyanine catalyst supported on MWCNT platform. Electroanalysis 23(2):325–329

    Google Scholar 

  68. Damos FS, Luz RC, Tanaka AA, Kubota LT (2010) Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host–guest supramolecular interactions. Anal Chim Acta 664(2):144–150

    Google Scholar 

  69. Duarte J, Luz R, Damos F, Tanaka AA, Kubota LT (2008) A highly sensitive amperometric sensor for oxygen based on iron(II) tetrasulfonated phthalocyanine and iron(III) tetra-(N-methyl-pyridyl)-porphyrin multilayers. Anal Chim Acta 612(1):29–36

    Google Scholar 

  70. D’Souza F, Hsieh Y, Deviprasad GR (1998) Four-electron electrocatalytic reduction of dioxygen to water by an ion-pair cobalt porphyrin dimer adsorbed on a glassy carbon electrode. Chem Commun 9:1027–1028

    Google Scholar 

  71. Liu S, Xu J, Sun H, Li D-M (2000) meso-Tetrakis(4-N-benzylpyridyl)porphyrin and its supramolecular complexes formed with anionic metal–oxo cluster: spectroscopy and electrocatalytic reduction of dioxygen. Inorg Chim Acta 306(1):87–93

    Google Scholar 

  72. Araki K, Toma HE (2006) Supramolecular Porphyrins as Electrocatalysts. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-macrocyclic metal complexes. Springer, New York, pp 255–314

    Google Scholar 

  73. Shi C, Anson FC (1991) Multiple intramolecular electron transfer in the catalysis of the reduction of dioxygen by cobalt meso-tetrakis(4-pyridyl)porphyrin to which four Ru(NH3)5 groups are coordinated. J Am Chem Soc 113(25):9564–9570

    Google Scholar 

  74. Shi C, Anson FC (1992) Electrocatalysis of the reduction of molecular oxygen to water by tetraruthenated cobalt meso-tetrakis(4-pyridyl)porphyrin adsorbed on graphite electrodes. Inorg Chem 31(24):5078–5083

    Google Scholar 

  75. Steiger B, Anson FC (1997) [5,10,15,20-tetrakis(4-((pentaammineruthenio)-cyano)phenyl)porphyrinato]cobalt(II) immobilized on graphite electrodes catalyzes the electroreduction of O2 to H2O, but the corresponding 4-cyano-2,6-dimethylphenyl derivative catalyzes the reduction only to H2O2. Inorg Chem 36(18):4138–4140

    Google Scholar 

  76. Shi C, Anson FC (1996) Cobalt meso- tetrakis(N-methyl-4-pyridiniumyl)porphyrin becomes a catalyst for the electroreduction of O2 by four electrons when [(NH3)5Os]n+ (n = 2, 3) groups are coordinated to the porphyrin ring. Inorg Chem 35(26):7928–7931

    Google Scholar 

  77. Zagal JH, Páez M, Sturm J, Ureta-Zanartu S (1984) Electroreduction of oxygen on mixtures of phthalocyanines co-adsorbed on a graphite electrode. J Electroanal Chem 181(1–2):295–300

    Google Scholar 

  78. Dobrzeniecka A, Zeradjanin A, Masa J, Stroka J, Goral M, Schuhmann W, Kulesza PJ (2011) ECS Trans 35:33–44

    Google Scholar 

  79. Forshey PA, Kuwana T (1983) Electrochemistry of oxygen reduction. 4. Oxygen to water conversion by iron(II)(tetrakis(N-methyl-4-pyridyl)porphyrin) via hydrogen peroxide. Inorg Chem 22(5):699–707

    Google Scholar 

  80. Elbaz L, Korin E, Soifer L, Bettelheim A (2008) Electrocatalytic oxygen reduction by Co(III) porphyrins incorporated in aerogel carbon electrodes. J Electroanal Chem 621(1):91–96

    Google Scholar 

  81. Zagal JH, Páez MA, Silva JF (2006) Fundamental Aspects on the Catalytic Activity of Metallomacrocyclics for the Electrochemical Reduction of O2. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-Macrocyclic Metal Complexes. Springer, New York, pp 41–82

    Google Scholar 

  82. Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136

    Google Scholar 

  83. Zagal JH (2003) Macrocycles. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications, vol. 2, Part 5. Wiley, Chichester

    Google Scholar 

  84. Tse Y, Janda P, Lam H, Zhang J, Pietro WJ, Lever ABP (1997) Monomeric and polymeric tetra-aminophthalocyanatocobalt(II) modified electrodes: electrocatalytic reduction of oxygen. J Porphyrins Phthalocyanines 1(1):3–16

    Google Scholar 

  85. Pavez J, Paez M, Ringuede BF, Zagal JH (2005) Effect of film thickness on the electro-reduction of molecular oxygen on electropolymerized cobalt tetra-aminophthalocyanine films. J Solid State Electrochem 9(1):21–29

    Google Scholar 

  86. Ramírez G, Trollund E, Isaacs M, Armijo F, Zagal JH, Costamagna J, Aguirre MJ (2002) Electroreduction of molecular oxygen on poly-iron-tetraaminophthalocyanine modified electrodes. Electroanalysis 14(7–8):540–545

    Google Scholar 

  87. Lalande G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1997) Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells? Electrochim Acta 42(9):1379–1388

    Google Scholar 

  88. Bouwkamp-Wijnoltz A, Visscher W, van Veen J (1998) The selectivity of oxygen reduction by pyrolysed iron porphyrin supported on carbon. Electrochim Acta 43(21–22):3141–3152

    Google Scholar 

  89. Lefevre M, Dodelet JP, Bertrand P (2002) Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J Phys Chem B 106(34):8705–8713

    Google Scholar 

  90. Lefèvre M (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48(19):2749–2760

    Google Scholar 

  91. Schilling T, Okunola A, Masa J, Schuhmann W, Bron M (2010) Carbon nanotubes modified with electrodeposited metal porphyrins and phenanthrolines for electrocatalytic applications. Electrochim Acta 55(26):7597–7602

    Google Scholar 

  92. Bouwkamp-Wijnoltz AL, Visscher W, van Veen JA (2002) On active-site heterogeneity in pyrolyzed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: an in situ Mossbauer study. J Phys Chem B 106(50):12993–13001

    Google Scholar 

  93. Kobayashi N, Nevin WA (1996) Electrocatalytic reduction of oxygen using water-soluble iron and cobalt phthalocyanines and porphyrins. Appl Organomet Chem 10(8):579–590

    Google Scholar 

  94. Zagal JH, Aguirre MJ, Basaez L, Pavez J, Padilla L, Toro-Labbé A (1995) Possible explanations for the volcano-shaped plots for the electrocatalytic reduction of O2 on electrodes modified with N-4 macrocycles. In: Adzic RR, Anson FC, Kinoshita K (eds) Proceedings of the symposium on oxygen electrochemistry, 95–26. The Electrochemical Society Symposium Inc., Pennington, NJ, p 89

    Google Scholar 

  95. Bytheway I, Hall MB (1994) Theoretical calculations of metal-dioxygen complexes. Chem Rev 94(3):639–658

    Google Scholar 

  96. Wang G, Ramesh N, Hsu A, Deryn C, Rongrong C (2008) Density functional theory study of the adsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine. Mol Simul 34(10–15):1051–1056

    Google Scholar 

  97. Scherson DA, Palencsár A, Tolmachev Y, Stefan I (2008) Transition metal macrocycles as electrocatalysts for dioxygen reduction. In: Alkire RC, Kolb DM, Lipkowski J, Ross PN (eds) Electrochemical surface modification: thin films, functionalization and characterization. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  98. Zecevic S, Simic-Glavaski B, Yeager E, Lever ABP, Minor PC (1985) Spectroscopic and electrochemical studies of transition metal tetrasulfonated phthalocyanines. Part V. Voltammetric studies of adsorbed tetrasulfonated phthalocyanines (MTsPc) in aqueous solutions. J Electroanal Chem 196(2):339–358

    Google Scholar 

  99. Zagal JH, Griveau S, Francisco Silva J, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254(23–24):2755–2791

    Google Scholar 

  100. Kim S, Scherson DA (1992) In situ UV–visible reflection absorption wavelength modulation spectroscopy of species irreversibly adsorbed on electrode surfaces. Anal Chem 64(24):3091–3095

    Google Scholar 

  101. Stefan IC, Mo Y, Ha SY, Scherson D (2003) In situ Fe K-edge X-ray absorption fine structure of a nitrosyl adduct of iron phthalocyanine irreversibly adsorbed on a high area carbon electrode in an acidic electrolyte. Inorg Chem 42(14):4316–4321

    Google Scholar 

  102. Zagal JH, Bedioui F, Dodelet JP (eds) (2006) N4-macrocyclic metal complexes. Springer, New York

    Google Scholar 

  103. Wiesener K, Ohms D, Neumann V, Franke R (1989) N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen. Mater Chem Phys 22(3–4):457–475

    Google Scholar 

  104. van Veen J (1979) Oxygen reduction on monomeric transition metal phthalocyanines in acid electrolyte. Electrochim Acta 24(9):921–928

    Google Scholar 

  105. van Veen JA, van Baar JF, Kroese CJ, Coolegem JGF, De Wit N, Colijn HA (1981) Oxygen reduction on transition-metal porphyrins in acid electrolyte. 1. Activity. Phys Chem Chem Phys 85(8):693–700

    Google Scholar 

  106. Zagal JH, Gulppi M, Isaacs M, Cárdenas-Jirón G, Aguirre MJ (1998) Linear versus volcano correlations between electrocatalytic activity and redox and electronic properties of metallophthalocyanines. Electrochim Acta 44(8–9):1349–1357

    Google Scholar 

  107. Appleby AJ, Zagal JH (2011) Free energy relationships in electrochemistry: a history that started in 1935. J Solid State Electrochem 15(7–8):1811–1832

    Google Scholar 

  108. Cardenas-Jiron GI, Gulppi MA, Caro CA et al (2001) Reactivity of electrodes modified with substituted metallophthalocyanines. Correlations with redox potentials, Hammett parameters and donor–acceptor intermolecular hardness. Electrochim Acta 46(20–21):3227–3235

    Google Scholar 

  109. Sehlotho N, Nyokong T (2006) Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen. J Electroanal Chem 595(2):161–167

    Google Scholar 

  110. Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys Chem Chem Phys 9(26):3383–3396

    Google Scholar 

  111. Zagal JH, Ponce I, Baez D, Venegas R, Pavez J, Paez M, Gulppi M (2012) A possible interpretation for the high catalytic activity of heat-treated metal-Nx/C macrocycles for O2 reduction in terms of formal potentials of the catalyst. Electrochem Solid-State Lett 15(6):B1–B3

    Google Scholar 

  112. Jaouen F, Herranz J, Lefèvre M, Dodelet JP, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson T, Pylypenko S, Atanassov P, Ustinov EA (2009) Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl Mater Interfaces 1(8):1623–1639

    Google Scholar 

  113. Schlettwein D, Yoshida T (1998) Electrochemical reduction of substituted cobalt phthalocyanines adsorbed on graphite. J Electroanal Chem 441(1–2):139–146

    Google Scholar 

  114. Zagal JH, Cárdenas-Jirón GI (2000) Reactivity of immobilized cobalt phthalocyanines for the electroreduction of molecular oxygen in terms of molecular hardness. J Electroanal Chem 489(1–2):96–100

    Google Scholar 

  115. Cardenas-Jiron GI, Zagal JH (2001) Donor–acceptor intermolecular hardness on charge transfer reactions of substituted cobalt phthalocyanines. J Electroanal Chem 497(1–2):55–60

    Google Scholar 

  116. Zagal JH, Gulppi MA, Cárdenas-Jirón G (2000) Metal-centered redox chemistry of substituted cobalt phthalocyanines adsorbed on graphite and correlations with MO calculations and Hammett parameters. Electrocatalytic reduction of a disulfide. Polyhedron 19(22–23):2255–2260

    Google Scholar 

  117. Newton MD (1991) Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions. Chem Rev 91(5):767–792

    Google Scholar 

  118. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci 83(22):8440–8441

    Google Scholar 

  119. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Google Scholar 

  120. Ulstrup J (1977) Catalysis of the electrochemical reduction of molecular dioxygen by metal phthalocyanines. J Electroanal Chem 79(1):191–197

    Google Scholar 

  121. Rosa A, Baerends EJ (1994) Metal-macrocycle interaction in phthalocyanines: density functional calculations of ground and excited states. Inorg Chem 33(3):584–595

    Google Scholar 

  122. Hipps KW, Lu X, Wang XD, Mazur U (1996) Metal d-orbital occupation-dependent images in the scanning tunneling microscopy of metal phthalocyanines. J Phys Chem 100(27):11207–11210

    Google Scholar 

  123. Jasinski R (1965) Cobalt phthalocyanine as a fuel cell cathode. J Electrochem Soc 112(5):526

    Google Scholar 

  124. Yeager E (1984) Electrocatalysis for O2 reduction. Electrochim Acta 29(11):1527–1537

    Google Scholar 

  125. Hinnen C, Coowar F, Savy M (1989) Oxygen reduction in acid media investigations by electroreflectance on adsorbed iron phthalocyanine and naphthalocyanine layers. J Electroanal Chem 264(1–2):167–180

    Google Scholar 

  126. van den Ham D, Hinnen C, Magner G, Savy M (1987) Electrocatalytic oxygen reduction: the role of oxygen bridges as a structural factor in the activity of transition-metal phthalocyanines. J Phys Chem 91(18):4743–4748

    Google Scholar 

  127. Coowar F, Contamin O, Savy M, Scarbeck G (1988) Electrocatalysis of O2 reduction to water in different acid media by iron naphthalocyanines. J Electroanal Chem 246(1):119–138

    Google Scholar 

  128. Elzing A, van der Putten A, Visscher W, Barendrecht E (1987) The cathodic reduction of oxygen at metal tetrasulfonato-phthalocyanines: influence of adsorption conditions on electrocatalysis. J Electroanal Chem 233(1–2):99–112

    Google Scholar 

  129. Fierro CA, Mohan M, Scherson DA (1990) In situ Moessbauer spectroscopy of a species irreversibly adsorbed on an electrode surface. Langmuir 6(8):1338–1342

    Google Scholar 

  130. Ouyang J, Shigehara K, Yamada A, Anson FC (1991) Hexadecafluoro- and octacyano phthalocyanines as electrocatalysts for the reduction of dioxygen. J Electroanal Chem 297(2):489–498

    Google Scholar 

  131. van der Putten A, Elzing A, Visscher W, Barendrecht E (1986) Oxygen reduction on vacuum-deposited and absorbed transition-metal phthalocyanine films. J Electroanal Chem 214(1–2):523–533

    Google Scholar 

  132. Song C, Zhang L, Zhang J (2006) Reversible one-electron electro-reduction of O2 to produce a stable superoxide catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. J Electroanal Chem 587(2):293–298

    Google Scholar 

  133. Kalvelage H, Mecklenburg A, Kunz U, Hoffmann U (2000) Electrochemical reduction of oxygen at pyrolyzed iron and cobalt N4-chelates on carbon black supports. Chem Eng Technol 23(9):803–807

    Google Scholar 

  134. Coutanceau C, Rakotondrainibe A, Crouigneau P, Léger JM, Lamy C (1995) Spectroscopic investigations of polymer-modified electrodes containing cobalt phthalocyanine: application to the study of oxygen reduction at such electrodes. J Electroanal Chem 386(1–2):173–182

    Google Scholar 

  135. Elzing A, van der Putten A, Visscher W, Barendrecht E (1990) Spectroscopic measurements on metal tetrasulphonato-phthalocyanines. J Electroanal Chem 279(1–2):137–156

    Google Scholar 

  136. Phougat N, Vasudevan P (1997) Electrocatalytic activity of some metal phthalocyanine compounds for oxygen reduction in phosphoric acid. J Power Sources 69(1–2):161–163

    Google Scholar 

  137. Ponce I, Silva JF, Oñate R, Rezende MC, Páez MA, Pavez J, Zagal JH (2011) Enhanced catalytic activity of Fe phthalocyanines linked to Au(111) via conjugated self-assembled monolayers of aromatic thiols for O2 reduction. Electrochem Commun 13(11):1182–1185

    Google Scholar 

  138. Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic, New York

    Google Scholar 

  139. van den Brink F, Barendrecht E, Visscher W (1980) The cathodic reduction of oxygen: A review with emphasis on macrocyclic organic metal complexes as electrocatalysts. Recl Trav Chim Pays-Bas 99:253–262

    Google Scholar 

  140. Elzing A, van der Putten A, Visscher W, Barendrecht E (1987) The mechanism of oxygen reduction at iron tetrasulfonato-phthalocyanine incorporated in polypyrrole. J Electroanal Chem 233(1–2):113–123

    Google Scholar 

  141. van den Brink F, Visscher W, Barendrecht E (1984) Electrocatalysis of cathodic oxygen reduction by metal phthalocyanines. Part III. Iron phthalocyanine as electrocatalyst: experimental part. J Electroanal Chem 172(1–2):301–325

    Google Scholar 

  142. Baranton S, Coutanceau C, Garnier E, Léger J-M (2006) How does α-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? J Electroanal Chem 590(1):100–110

    Google Scholar 

  143. Ikeda O, Fukuda H, Tamura H (1986) The effect of heat treatment on group VIIIB porphyrins as electrocatalysts in the cathodic reduction of oxygen. J Chem Soc Faraday Trans 1 82(5):1561

    Google Scholar 

  144. Anderson AB, Sidik RA (2004) Oxygen electroreduction on Fe II and Fe III coordinated to N4 chelates. Reversible potentials for the intermediate steps from quantum theory. J Phys Chem B 108(16):5031–5035

    Google Scholar 

  145. Kadish KM, Smith KM, Guilard R (eds) (2003) The porphyrin handbook. Academic, San Diego, Calif, London

    Google Scholar 

  146. Magner G (1981) Effects of substitution of iron by molybdenum in the naphthalocyanine structures upon their electrocatalytic properties for O2 reduction and evolution in alkaline media. J Electrochem Soc 128(8):1674

    Google Scholar 

  147. Baker R, Wilkinson D, Zhang J (2008) Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53(23):6906–6919

    Google Scholar 

  148. Zhang L, Song C, Zhang J, Wang H, Wilkinson DP (2005) Temperature and pH dependence of oxygen reduction catalyzed by iron fluoroporphyrin adsorbed on a graphite electrode. J Electrochem Soc 152(12):A2421

    Google Scholar 

  149. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2605

    Google Scholar 

  150. Mirica LM, Ottenwaelder X, Stack TD (2004) Structure and spectroscopy of copper-dioxygen complexes. Chem Rev 104(2):1013–1045

    Google Scholar 

  151. Schweiger H, Vayner E, Anderson AB (2005) Why is there such a small overpotential for O2 electroreduction by copper laccase? Electrochem Solid-State Lett 8(11):A585

    Google Scholar 

  152. Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC (2008) Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens Bioelectron 23(8):1229–1235

    Google Scholar 

  153. Vayner E, Schweiger H, Anderson AB (2007) Four-electron reduction of O2 over multiple Cu–I centers: quantum theory. J Electroanal Chem 607(1–2):90–100

    Google Scholar 

  154. Sugiyama K, Aoki K (1989) Catalytic reactions of bis(1,10-phenanthroline) cuprous complex with hydrogen-peroxide at glassy-carbon and pyrolytic-graphite electrodes. J Electroanal Chem 262(1–2):211–219

    Google Scholar 

  155. Zagal JH, Paez C, Aguirre MJ, Garcia AM, Zamudio W (1993) Catalytic electroreduction of molecular-oxygen on Cu(II)bisdipyridyl and Cu(II)bisphenanthroline complexes adsorbed on a graphite electrode. Bol Soc Chil Quim 38(3):191–199

    Google Scholar 

  156. Zhang JJ, Anson FC (1993) Electrocatalysts for the reduction of O2 and H2O2 based on complexes of Cu(II) with the strongly adsorbing 2,9-dimethyl-1,10-phenanthroline ligand. Electrochim Acta 38(16):2423–2429

    Google Scholar 

  157. Zhang JJ, Anson FC (1993) Complexes of Cu(II) with electroactive chelating ligands adsorbed on graphite-electrodes - Surface coordination chemistry and electrocatalysis. J Electroanal Chem 348(1–2):81–97

    Google Scholar 

  158. Lei YB, Anson FC (1994) Mechanistic aspects of the electroreduction of as catalyzed by copper-phenanthroline complexes adsorbed on graphite-electrodes. Inorg Chem 33(22):5003–5009

    Google Scholar 

  159. Lei YB, Anson FC (1995) Dynamics of the Coordination equilibria in solutions containing copper(II), copper(I), and 2,9-dimethyl-1,10-phenanthroline and their effect on the reduction of O2 by Cu(I). Inorg Chem 34(5):1083–1089

    Google Scholar 

  160. Marques AL, Zhang JJ, Lever AB (1995) Poisoning effect of SCN-, H2S and HCN on the reduction of O2 and H2O2 catalyzed by a 1:1 surface complex of Cu-1,10-phenanthroline adsorbed on graphite electrodes, and its possible application in chemical analysis. J Electroanal Chem 392(1–2):43–53

    Google Scholar 

  161. Losada J, del Peso I, Beyer L (2001) Electrochemical and spectroelectrochemical properties of copper(II) Schiff-base complexes. Inorg Chim Acta 321(1–2):107–115

    Google Scholar 

  162. Dias VL, Fernandes EN, da Silva LSM, Marques EP, Zhang J, Marques ALB (2005) Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(II)-2,4,6-tris(2-piridil)-1,3,5-triazine complex adsorbed on a graphite electrode. J Power Sources 142(1–2):10–17

    Google Scholar 

  163. Weng YC, Fan FR, Bard AJ (2005) Combinatorial biomimetics. Optimization of a composition of copper(II) poly-L-histidine complex as an electrocatalyst for O2 reduction by scanning electrochemical microscopy. J Am Chem Soc 127(50):17576–17577

    Google Scholar 

  164. Wang M, Xu X, Gao J, Jia N, Cheng Y (2006) Electrocatalytic reduction O2 at pyrolytic graphite electrode modified by a novel copper(II) complex with 2-[bis(2-aminoethyl)amino]ethanol and imidazole ligands. Russ J Electrochem 42(8):878–881

    Google Scholar 

  165. Pichon C, Mialane P, Dolbecq A, Marrot J, Riviere E, Keita B, Nadjo SF (2007) Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates. Inorg Chem 46(13):5292–5301

    Google Scholar 

  166. Hermann A, Silva LS, Peixoto CRM, Oliveira ABD, Bordinhão J, Hörner M (2008) Electrochemical properties of Cu4[PhN3C6H4N3(H)Ph]4(μ-O)2, a tetranuclear Copper(II) complex with 1-phenyltriazenido-2-phenyltriazene-benzene as ligand. Eclet Quím 33(3):43–46

    Google Scholar 

  167. Thorum MS, Yadav J, Gewirth AA (2009) Oxygen reduction activity of a copper complex of 3,5-diamino-1,2,4-triazole supported on carbon black. Angew Chem Int Ed 48(1):165–167

    Google Scholar 

  168. McCrory CCL, Ottenwaelder X, Stack TDP, Chidsey CED (2007) Kinetic and mechanistic studies of the electrocatalytic reduction of O2 to H2O with mononuclear Cu complexes of substituted 1,10-phenanthrolines. J Phys Chem A 111(49):12641–12650

    Google Scholar 

  169. McCrory CCL, Devadoss A, Ottenwaelder X, Lowe RD, Stack TDP, Chidsey CED (2011) Electrocatalytic O2 reduction by covalently immobilized mononuclear copper(I) complexes: evidence for a binuclear Cu2O2 intermediate. J Am Chem Soc 133(11):3696–3699

    Google Scholar 

  170. Zhang JJ, Anson FC (1992) Electrochemistry of the Cu(II) complex of 4,7-diphenyl-1,10-phenanthrolinedisulfonate adsorbed on graphite electrodes and its behavior as an electrocatalyst for the reduction of O2 and H2O2. J Electroanal Chem 341(1–2):323–341

    Google Scholar 

  171. Masa J, Ozoemena K, Schuhmann ZJH (2012) Oxygen reduction reaction using N4-metallomacrocyclic catalysts: fundamentals on rational catalyst design. J Porphyrins Phthalocyanines 16(7):761

    Google Scholar 

  172. Barton SC, Kim H, Binyamin G, Zhang Y, Heller A (2001) The “Wired” laccase cathode: high current density electroreduction of O2 to water at +0.7 V (NHE) at pH 5. J Am Chem Soc 123(24):5802–5803

    Google Scholar 

  173. Barton SC, Kim H, Binyamin G, Zhang Y, Heller A (2001) Electroreduction of O2 to water on the “Wired” Laccase Cathode. J Phys Chem B 105(47):11917–11921

    Google Scholar 

  174. Soukharev V, Mano N, Heller A (2004) A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V. J Am Chem Soc 126(27):8368–8369

    Google Scholar 

  175. Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells Part I: The cathode challenges. Platinum Metals Rev 46(1):3–14

    Google Scholar 

  176. Hu X, Liu C, Wu Y, Zhang Z (2011) Structure–reactivity relationships of metalloporphyrin modified by ionic liquid and its analogue. J Phys Chem C 115(48):23913–23921

    Google Scholar 

  177. Masa J, Schilling T, Bron M, Schuhmann W (2011) Electrochemical synthesis of metal–polypyrrole composites and their activation for electrocatalytic reduction of oxygen by thermal treatment. Electrochim Acta 60:410–418

    Google Scholar 

  178. Xia W, Masa J, Bron M, Schuhmann W, Muhler M (2011) Highly active metal-free nitrogen-containing carbon catalysts for oxygen reduction synthesized by thermal treatment of polypyridine-carbon black mixtures. Electrochem Commun 13(6):593–596

    Google Scholar 

  179. Masa J, Bordoloi A, Muhler M, Schuhmann W, Xia W (2012) Enhanced electrocatalytic stability of platinum nanoparticles supported on a nitrogen-doped composite of carbon nanotubes and mesoporous titania under oxygen reduction conditions. ChemSusChem 5:523–525

    Google Scholar 

  180. Mittasch A, Frankenburg W (1950) Early studies of multicomponent catalysts. Adv Catal 2:81–104

    Google Scholar 

  181. Dembinska B, Kulesza PJ (2009) Multi-walled carbon nanotube-supported tungsten oxide-containing multifunctional hybrid electrocatalytic system for oxygen reduction in acid medium. Electrochim Acta 54(20):4682–4687

    Google Scholar 

  182. Baranton S, Coutanceau C, Roux C et al (2005) Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: tolerance to methanol, stability and kinetics. J Electroanal Chem 577(2):223–234

    Google Scholar 

  183. Lu Y, Reddy R (2007) The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC. Electrochim Acta 52(7):2562–2569

    Google Scholar 

Download references

Acknowledgments

J.H. Zagal is grateful to Fondecyt 1100773 and Núcleo Milenio Project P07-006 Iniciativa Científica Milenio del Ministerio de Economía, Fomento y Turismo, for financial support. Justus Masa is grateful to the German Academic Exchange Service (DAAD) for a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José H. Zagal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Masa, J., Ozoemena, K.I., Schuhmann, W., Zagal, J.H. (2013). Fundamental Studies on the Electrocatalytic Properties of Metal Macrocyclics and Other Complexes for the Electroreduction of O2 . In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics