Skip to main content

Metal-Modified Carbide Anode Electrocatalysts

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

  • 3856 Accesses

Abstract

Fuel cells are being extensively studied to help ease the potential energy crisis. There have been many recent advances in direct methanol fuel cells (DMFC). These devices have shown promise for portable power applications because of the high gravimetric energy density of methanol. One major limitation of the technology is its extensive use of platinum in its anode catalyst. This chapter will provide a review of the work done to eliminate or significantly decrease the amount of platinum in DMFC catalysts by replacing platinum with tungsten monocarbide (WC) and monolayer coverages of platinum or palladium on WC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    Article  Google Scholar 

  2. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181(4099):547–549

    Article  Google Scholar 

  3. Chen JG (1996) Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem Rev 96:1477–1498

    Article  Google Scholar 

  4. Hwu HH, Chen JG (2005) Surface chemistry of transition metal carbides. Chem Rev 105: 185–212

    Article  Google Scholar 

  5. Oyama ST (1996) The chemistry of transition metal carbides and nitrides. Blackie Academic and Professional, London

    Book  Google Scholar 

  6. Hwu HH, Chen JG (2003) Potential application of tungsten carbides as electrocatalysts: 4. Reactions of methanol, water, and carbon monoxide over carbide-modified W(110). J Phys Chem B 107:2029–2039

    Article  Google Scholar 

  7. Hwu HH, Chen JG (2003) Potential application of tungsten carbides as electrocatalysts. J Vac Sci Technol A 21:1488–1493

    Article  Google Scholar 

  8. Hwu HH, Chen JG, Kourtakis K, Lavin JG (2001) Potential application of tungsten carbides as electrocatalysts. 1. Decomposition of methanol over carbide-modified W(111). J Phys Chem B 105:10037–10044

    Article  Google Scholar 

  9. Hwu HH, Polizzotti BD, Chen JG (2001) Potential application of tungsten carbides as electrocatalysts. 2. Coadsorption of CO and H2O on carbide-modified W(111). J Phys Chem B 105:10045–10053

    Article  Google Scholar 

  10. Liu N, Kourtakis K, Figueroa JC, Chen JG (2003) Potential application of tungsten carbides as electrocatalysts: III. Reactions of methanol, water, and hydrogen on Pt-modified C/W(111) surfaces. J Catal 215:254–263

    Article  Google Scholar 

  11. Zellner MB, Chen JG (2005) Potential Application of tungsten carbides as electrocatalysts: synergistic effect by supporting Pt on C/W(110) for the reactions of methanol, water, and CO. J Electrochem Soc 152:A1483–A1494

    Article  Google Scholar 

  12. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2005) Trends in the chemical properties of early transition metal carbide surfaces: A density functional study. Catal Today 105:66–73

    Article  Google Scholar 

  13. Esposito DV, Chen JG (2011) Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations. Energy Environ Sci 4:3900–3912

    Article  Google Scholar 

  14. Mellinger ZJ, Kelly TG, Chen JG (2012) Pd-modified tungsten carbide for methanol electro-oxidation: from surface science studies to electrochemical evaluation. ACS Catal 2:751–758

    Article  Google Scholar 

  15. Mellinger ZJ, Weigert EC, Stottlemyer AL, Chen JG (2008) Enhancing CO tolerance of electrocatalysts: electro-oxidation of CO on WC and Pt-modified WC. Electrochem Solid-State Lett 11(5):B63–B67

    Article  Google Scholar 

  16. Stottlemyer AL, Liu P, Chen JG (2010) Comparison of bond scission sequence of methanol on tungsten monocarbide and Pt-modified tungsten monocarbide. J Chem Phys 133:104702

    Article  Google Scholar 

  17. Stottlemyer AL, Weigert EC, Chen JG (2011) Tungsten carbides as alternative electrocatalysts: from surface science studies to fuel cell evaluation. Ind Eng Chem Res 50: 16–22

    Article  Google Scholar 

  18. Weigert EC, Esposito DV, Chen JG (2009) Cyclic voltammetry and XPS studies of electrochemical stability of clean and Pt-modified tungsten and molybdenum carbide (WC and Mo2C) electrocatalysts. J Power Sources 193:501–506

    Article  Google Scholar 

  19. Weigert EC, Humbert MP, Mellinger ZJ, Ren Q, Beebe TP Jr, Bao L, Chen JG (2008) Physical vapor deposition synthesis of tungsten monocarbide (WC) thin films on different carbon substrates. J Vac Sci Tech A 26:23–28

    Article  Google Scholar 

  20. Weigert EC, Stottlemyer AL, Zellner MB, Chen JG (2007) Tungsten monocarbide as potential replacement of platinum for methanol electrooxidation. J Phys Chem C 111:14617–14620

    Article  Google Scholar 

  21. Weigert EC, Zellner MB, Stottlemyer AL, Chen JG (2007) A combined surface science and electrochemical study of tungsten carbides as anode electrocatalysts. Top Catal 46:349–357

    Article  Google Scholar 

  22. Zellner MB, Chen JG (2005) Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts. Catal Today 99:299–307

    Article  Google Scholar 

  23. Weigert EC, Arisetty S, Advani SG, Prasad AK, Chen JG (2008) Electrochemical evaluation of tungsten monocarbide (WC) and platinum-modified WC as alternative DMFC electrocatalysts. J New Mater Electrochem Syst 11:243–251

    Google Scholar 

  24. Angelucci C, Deiner L, Nart F (2008) On-line mass spectrometry of the electro-oxidation of methanol in acidic media on tungsten carbide. J Solid State Electrochem 12:1599–1603

    Article  Google Scholar 

  25. Ganesan R, Lee JS (2005) Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. Angew Chem Int Ed 44:6557–6560

    Article  Google Scholar 

  26. Joo JB, Kim JS, Kim P, Yi J (2008) Simple preparation of tungsten carbide supported on carbon for use as a catalyst support in a methanol electro-oxidation. Mater Lett 62:3497–3499

    Article  Google Scholar 

  27. Meng H, Shen PK, Wei Z, Jiang SP (2006) Improved performance of direct methanol fuel cells with tungsten carbide promoted Pt/C composite cathode electrocatalyst. Electrochem Solid-State Lett 9:A368–A372

    Article  Google Scholar 

  28. Nagai M, Yoshida M, Tominaga H (2007) Tungsten and nickel tungsten carbides as anode electrocatalysts. Electrochim Acta 52:5430–5436

    Article  Google Scholar 

  29. Wang ZB, Zuo PJ, Liu BS, Yin GP, Shi PF (2009) Stable PtNiPb/WC catalyst for direct methanol fuel cells. Electrochem Solid-State Lett 12:A13–A15

    Article  Google Scholar 

  30. Zhao Z, Fang X, Li Y, Wang Y, Shen PK, Xie F, Zhang X (2009) The origin of the high performance of tungsten carbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation. Electrochem Commun 11:290–293

    Article  Google Scholar 

  31. Kelly TG, Stottlemyer AL, Ren H, Chen JG (2011) Comparison of O–H, C–H, and C–O bond scission sequence of methanol on tungsten carbide surfaces modified by Ni, Rh, and Au. J Phys Chem C 115:6644

    Article  Google Scholar 

  32. Skoplyak O, Menning CA, Barteau MA, Chen JG (2007) Experimental and theoretical study of reactivity trends for methanol on Co/Pt(111) and Ni/Pt(111) bimetallic surfaces. J Chem Phys 127:114707

    Article  Google Scholar 

  33. Chen Z-X, Neyman KM, Lim KH, Rösch N (2004) CH3O Decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study. Langmuir 20:8068–8077

    Article  Google Scholar 

  34. Jiang RB, Guo WY, Li M, Fu DL, Shan HH (2009) Density functional investigation of methanol dehydrogenation on Pd(111). J Phys Chem C 113:4188–4197

    Article  Google Scholar 

  35. Schennach R, Eichler A, Rendulic KD (2003) Adsorption and desorption of methanol on Pd (111) and on a Pd/V surface alloy. J Phys Chem B 107:2552–2558

    Article  Google Scholar 

  36. Zhang CJ, Hu P (2001) A first principles study of methanol decomposition on Pd(111): mechanisms for O–H bond scission and C–O bond scission. J Chem Phys 115:7182–7186

    Article  Google Scholar 

  37. Greeley J, Mavrikakis M (2002) A first-principles study of methanol decomposition on Pt(111). J Am Chem Soc 124:7193–7201

    Article  Google Scholar 

  38. Greeley J, Mavrikakis M (2004) Competitive paths for methanol decomposition on Pt(111). J Am Chem Soc 126:3910–3919

    Article  Google Scholar 

  39. Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG (2010) Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew Chem Int Ed 49:9859–9862

    Article  Google Scholar 

  40. Humbert MP, Menning CA, Chen JG (2010) Replacing bulk Pt in Pt–Ni–Pt bimetallic structures with tungsten monocarbide (WC): Hydrogen adsorption and cyclohexene hydrogenation on Pt–Ni–WC. J Catal 271:132–139

    Article  Google Scholar 

  41. Sexton BA (1981) Methanol decomposition on platinum (111). Surf Sci 102:271–281

    Article  Google Scholar 

  42. Davis JL, Barteau MA (1987) Decarbonylation and decomposition pathways of alcohols on Pd(111). Surf Sci 187(3):387–406

    Article  Google Scholar 

  43. Davis JL, Barteau MA (1990) Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111). Surf Sci 235:235–248

    Article  Google Scholar 

  44. Stottlemyer AL, Ren H, Chen JG (2009) Reactions of methanol and ethylene glycol on Ni/Pt: Bridging the materials gap between single crystal and polycrystalline bimetallic surfaces. Surf Sci 603:2630–2638

    Article  Google Scholar 

  45. Bozzini B, Gaudenzi GPD, Fanigliulo A, Mele C (2004) Electrochemical oxidation of WC in acidic sulphate solution. Corros Sci 46:453–469

    Article  Google Scholar 

  46. El-Aziz AM, Kibler LA (2002) Influence of steps on the electrochemical oxidation of CO adlayers on Pd(111) and on Pd films electrodeposited onto Au(111). J Electroanal Chem 534: 107–114

    Article  Google Scholar 

  47. Antolini E (2009) Palladium in fuel cell catalysis. Energy Environ Sci 2:915–931

    Article  Google Scholar 

  48. Lee Y-W, Ko A-R, Han S-B, Kim H-S, Kim D-Y, Kim S-J, Park K-W (2010) Cuboctahedral Pd nanoparticles on WC for enhanced methanol electrooxidation in alkaline solution. Chem Commun 46:9241–9243

    Article  Google Scholar 

  49. Lu J, Bravo-Suarez JJ, Takahashi A, Haruta M, Oyama ST (2005) In situ UV–vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. J Catal 232:85–95

    Article  Google Scholar 

  50. Singh RN, Singh A, Anindita X (2009) Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH. Int J Hydrogen Energy 34:2052–2057

    Article  Google Scholar 

  51. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39

    Article  Google Scholar 

  52. Cheng X, Peng C, You M, Liu L, Zhang Y, Fan Q (2006) Characterization of catalysts and membrane in DMFC lifetime testing. Electrochim Acta 51:4620–4625

    Article  Google Scholar 

  53. Reshetenko TV, Kim H-T, Krewer U, Kweon HJ (2007) The effect of the anode loading and method of MEA fabrication on DMFC performance. Fuel Cells 3:238–245

    Article  Google Scholar 

  54. Wee J-H (2006) Which type of fuel cell is more competitive for portable application: direct methanol fuel cells or direct borohydride fuel cells? J Power Sources 161:1–10

    Article  Google Scholar 

  55. Bozzini B, Gaudenzi GPD, Busson B, Humbert C, Six C, Gayral A, Tadjeddine A (2010) In situ spectroelectrochemical measurements during the electro-oxidation of ethanol on WC-supported Pt-black, based on sum-frequency generation spectroscopy. J Power Sources 195(13):4119–4123

    Article  Google Scholar 

  56. Bozzini B, Gaudenzi GPD, Tadjeddine A (2010) In situ spectroelectrochemical measurements during the electro-oxidation of ethanol on WC-supported Pt-black. Part II: Monitoring of catalyst aging by in situ Fourier transform infrared spectroscopy. J Power Sources 195(24): 7968–7973

    Article  Google Scholar 

  57. Esposito DV, Dobson KD, McCandless BE, Birkmire RW, Chen JG (2009) Comparative study of tungsten monocarbide and platinum as counter electrodes in polysulfide-based photoelectrochemical solar cells. J Electrochem Soc 156:B962–B969

    Article  Google Scholar 

  58. Esposito DV, Hunt ST, Kimmel YC, Chen JG (2012) A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J Am Chem Soc 134:3025–3033

    Article  Google Scholar 

  59. Hsu IJ, Kimmel YC, Jiang XJ, Willis BG, Chen JG (2012) Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction. Chem Commun 48:1063–1065

    Article  Google Scholar 

  60. Hu FP, Shen PK (2007) Ethanol oxidation on hexagonal tungsten carbide single nanocrystal-supported Pd electrocatalyst. J Power Sources 173:877–881

    Article  Google Scholar 

  61. Kimmel YC, Esposito DV, Birkmire RW, Chen JG (2012) Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts. Int J Hydrogen Energy 37:3019–3024

    Article  Google Scholar 

  62. Falk M, Whalley E (1961) Infrared spectra of methanol and deuterated methanols in gas, liquid, and solid phases. J Chem Phys 34:1554–1568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingguang G. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mellinger, Z.J., Chen, J.G. (2013). Metal-Modified Carbide Anode Electrocatalysts. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics