Skip to main content

Dealloyed Pt-Based Core–Shell Catalysts for Oxygen Reduction

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

In this chapter, we review recent works of dealloyed Pt core–shell catalysts, which are synthesized by selective removal of transition metals from a transition-metal-rich Pt alloys (e.g., PtM3). The resulted dealloyed Pt catalysts represent very active materials for the oxygen reduction reaction (ORR) catalysis in terms of noble-metal-mass-normalized activity as well as their intrinsic area-specific activity. The mechanistic origin of the catalytic activity enhancement and the stability of dealloyed Pt catalysts are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for pt, pt-alloy, and non-pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35

    Article  Google Scholar 

  2. Gasteiger HA, Markovic NM (2009) Just a dream-or future reality? Science 324(5923):48–49

    Article  Google Scholar 

  3. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1(14):2204–2219

    Article  Google Scholar 

  4. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51

    Article  Google Scholar 

  5. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107):63–66

    Article  Google Scholar 

  6. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  Google Scholar 

  7. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447

    Article  Google Scholar 

  8. Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J-C, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7(6):394–400

    Article  Google Scholar 

  9. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45(18):2897–2901

    Article  Google Scholar 

  10. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556

    Article  Google Scholar 

  11. Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44(14):2132–2135

    Article  Google Scholar 

  12. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756

    Article  Google Scholar 

  13. M-k M, Cho J, Cho K, Kim H (2000) Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim Acta 45(25–26):4211–4217

    Google Scholar 

  14. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 106(16):4181–4191

    Article  Google Scholar 

  15. Salgado JRC, Antolini E, Gonzalez ER (2004) Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction. J Phys Chem B 108(46):17767–17774

    Article  Google Scholar 

  16. Yang H, Alonso-Vante N, Leger JM, Lamy C (2004) Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes. J Phys Chem B 108(6):1938–1947

    Article  Google Scholar 

  17. Yang H, Vogel W, Lamy C, Alonso-Vante N (2004) Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J Phys Chem B 108(30):11024–11034

    Article  Google Scholar 

  18. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964

    Article  Google Scholar 

  19. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109(48):22701–22704

    Article  Google Scholar 

  20. Zhang JL, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127(36):12480–12481

    Article  Google Scholar 

  21. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3–4):249–262

    Article  Google Scholar 

  22. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220–222

    Article  Google Scholar 

  23. Wang JX, Inada H, Wu LJ, Zhu YM, Choi YM, Liu P, Zhou WP, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and pt shell thickness effects. J Am Chem Soc 131(47):17298–17302

    Article  Google Scholar 

  24. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128(27):8813–8819

    Article  Google Scholar 

  25. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497

    Article  Google Scholar 

  26. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247

    Article  Google Scholar 

  27. Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129(42):12624–12625

    Article  Google Scholar 

  28. Bardal E (2004) Corrosion and protection. Springer, London

    Book  Google Scholar 

  29. Raney M (1927) Method of producing finely divided nickel. US Patent 1,628,190

    Google Scholar 

  30. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410(6827):450–453

    Article  Google Scholar 

  31. Ding Y, Erlebacher J (2003) Nanoporous metals with controlled multimodal pore size distribution. J Am Chem Soc 125(26):7772–7773

    Article  Google Scholar 

  32. Ding Y, Chen MW, Erlebacher J (2004) Metallic mesoporous nanocomposites for electrocatalysis. J Am Chem Soc 126(22):6876–6877

    Article  Google Scholar 

  33. Ding Y, Kim YJ, Erlebacher J (2004) Nanoporous gold leaf: “ancient technology”/advanced material. Adv Mater 16(21):1897–1900

    Article  Google Scholar 

  34. Snyder J, Asanithi P, Dalton AB, Erlebacher J (2008) Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv Mater 20(24):4883–4886

    Article  Google Scholar 

  35. Snyder J, Fujita T, Chen MW, Erlebacher J (2010) Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat Mater 9(11):904–907

    Article  Google Scholar 

  36. Erlebacher J (2004) An atomistic description of dealloying – porosity evolution, the critical potential, and rate-limiting behavior. J Electrochem Soc 151(10):C614–C626

    Article  Google Scholar 

  37. Erlebacher J (2011) Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys Rev Lett 106(22):225504

    Article  Google Scholar 

  38. Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112(7):2770–2778

    Article  Google Scholar 

  39. Oezaslan M, Hasche F, Strasser P (2011) In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem Mater 23(8):2159–2165

    Article  Google Scholar 

  40. Strasser P, Koha S, Greeley J (2008) Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis. Phys Chem Chem Phys 10(25):3670–3683

    Article  Google Scholar 

  41. Srivastava R, Mani P, Hahn N, Strasser P (2007) Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles. Angew Chem Int Ed 46(47):8988–8991

    Article  Google Scholar 

  42. Yu CF, Koh S, Leisch JE, Toney MF, Strasser P (2008) Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discuss 140:283–296

    Article  Google Scholar 

  43. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu CF, Liu ZC, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2(6):454–460

    Article  Google Scholar 

  44. Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376(6537):238–240

    Article  Google Scholar 

  45. Mavrikakis M, Hammer B, Norskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81(13):2819–2822

    Article  Google Scholar 

  46. Wang C, Chi MF, Li DG, van der Vliet D, Wang GF, Lin QY, Mitchell JF, More KL, Markovic NM, Stamenkovic VR (2011) Synthesis of homogeneous pt-bimetallic nanoparticles as highly efficient electrocatalysts. ACS Catal 1(10):1355–1359

    Article  Google Scholar 

  47. Mani P, Srivastava R, Strasser P (2011) Dealloyed binary PtM3 (M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: performance in polymer electrolyte membrane fuel cells. J Power Sources 196(2):666–673

    Article  Google Scholar 

  48. Hasché F, Oezaslan M, Strasser P (2011) Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts. ChemCatChem 3(11):1805–1813

    Google Scholar 

  49. Oezaslan M, Strasser P (2011) Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. J Power Sources 196(12):5240–5249

    Article  Google Scholar 

  50. Hasche F, Oezaslan M, Strasser P (2012) Activity, structure and degradation of dealloyed PtNi3/nanoparticle electrocatalyst for the oxygen reduction reaction in PEMFC. J Electrochem Soc 159(1):B25–B34

    Article  Google Scholar 

  51. Oezaslan M, Hasche F, Strasser P (2012) Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J Electrochem Soc 159(4):B394–B405

    Article  Google Scholar 

  52. Rudi S, Tuaev X, Strasser P (2012) Electrocatalytic oxygen reduction on dealloyed Pt1-xNix alloy nanoparticle electrocatalysts. Electrocatalysis. doi:10.1007/s12678-12012-10098-x

  53. Gan L, Heggen M, Rudi S, Strasser P (2012) Core-shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett 12(10):5423–5430

    Article  Google Scholar 

  54. Debe MK, Steinbach AJ, Vernstrom GD, Hendricks SM, Kurkowski MJ, Atanasoski RT, Kadera P, Stevens DA, Sanderson RJ, Marvel E, Dahn JR (2011) Extraordinary oxygen reduction activity of Pt3Ni7. J Electrochem Soc 158(8):B910–B918

    Article  Google Scholar 

  55. Stevens DA, Wang S, Sanderson RJ, Liu GCK, Vernstrom GD, Atanasoski RT, Debe MK, Dahn JR (2011) A combined rotating disk electrode/x-ray diffraction study of co dissolution from Pt1-xCox alloys. J Electrochem Soc 158(8):B899–B904

    Article  Google Scholar 

  56. Wang C, Chi MF, Wang GF, van der Vliet D, Li DG, More K, Wang HH, Schlueter JA, Markovic NM, Stamenkovic VR (2011) Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv Funct Mater 21(1):147–152

    Article  Google Scholar 

  57. Liu Y, Hangarter CM, Bertocci U, Moffat TP (2012) Oxygen reduction reaction on electrodeposited Pt100-xNix: influence of alloy composition and dealloying. J Phys Chem C 116(14):7848–7862

    Article  Google Scholar 

  58. Wanjala BN, Fang B, Luo J, Chen YS, Yin J, Engehard MH, Loukrakpam R, Zhong CJ (2011) Correlation between atomic coordination structure and enhanced electrocatalytic activity for trimetallic alloy catalysts. J Am Chem Soc 133(32):12714–12727

    Article  Google Scholar 

  59. Wang C, Li D, Chi M, Pearson J, Rankin RB, Greeley J, Duan Z, Wang G, van der Vliet D, More KL, Markovic NM, Stamenkovic VR (2012) Rational development of ternary alloy electrocatalysts. J Phys Chem Lett 3(12):1668–1673

    Article  Google Scholar 

  60. Shao-Horn Y, Sheng W, Chen S, Ferreira P, Holby E, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3):285–305

    Article  Google Scholar 

  61. Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131(45):16348–16349

    Article  Google Scholar 

  62. Neyerlin KC, Srivastava R, Yu CF, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186(2):261–267

    Article  Google Scholar 

  63. Chen S, Ferreira PJ, Sheng WC, Yabuuchi N, Allard LF, Shao-Horn Y (2008) Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: direct evidence of percolated and sandwich-segregation structures. J Am Chem Soc 130(42):13818–13819

    Article  Google Scholar 

  64. Chen S, Sheng WC, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2009) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113(3):1109–1125

    Article  Google Scholar 

  65. Dutta I, Carpenter MK, Balogh MP, Ziegelbauer JM, Moylan TE, Atwan MH, Irish NP (2010) Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst. J Phys Chem C 114(39):16309–16320

    Article  Google Scholar 

  66. Carlton CE, Chen S, Ferreira PJ, Allard LF, Shao-Horn Y (2012) Sub-nanometer-resolution elemental mapping of “Pt3Co” nanoparticle catalyst degradation in proton-exchange membrane fuel cells. J Phys Chem Lett 3(2):161–166

    Article  Google Scholar 

  67. Gan L, Yu R, Luo J, Cheng ZY, Zhu J (2012) Lattice strain distributions in individual dealloyed Pt-Fe catalyst nanoparticles. J Phys Chem Lett 3(7):934–938

    Article  Google Scholar 

  68. Xin HL, Mundy JA, Liu ZY, Cabezas R, Hovden R, Kourkoutis LF, Zhang JL, Subramanian NP, Makharia R, Wagner FT, Muller DA (2012) Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. Nano Lett 12(1):490–497

    Article  Google Scholar 

  69. Oezaslan M, Heggen M, Strasser P (2012) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134(1):514–524

    Article  Google Scholar 

  70. Haider M, Uhlemann S, Schwan E, Rose H, Kabius B, Urban K (1998) Electron microscopy image enhanced. Nature 392(6678):768–769

    Article  Google Scholar 

  71. Urban KW (2008) Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321(5888):506–510

    Article  Google Scholar 

  72. Yu Y, Xin HL, Hovden R, Wang D, Rus ED, Mundy JA, Muller DA, Abruña HD (2012) Three-dimensional tracking and visualization of hundreds of Pt−Co fuel cell nanocatalysts during electrochemical aging. Nano Lett 12(9):4417–4423

    Google Scholar 

  73. Heggen M, Oezaslan M, Houben L, Strasser P (2012) Formation and analysis of core–shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts. J Phys Chem C 116(36):19073–19083

    Google Scholar 

  74. Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A (2009) Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem 1(5):397–402

    Article  Google Scholar 

  75. Nesselberger M, Ashton S, Meier JC, Katsounaros I, Mayrhofer KJJ, Arenz M (2011) The particle size effect on the oxygen reduction reaction activity of pt catalysts: influence of electrolyte and relation to single crystal models. J Am Chem Soc 133(43):17428–17433

    Article  Google Scholar 

  76. Shao MH, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11(9):3714–3719

    Article  Google Scholar 

  77. Perez-Alonso FJ, McCarthy DN, Nierhoff A, Hernandez-Fernandez P, Strebel C, Stephens IEL, Nielsen JH, Chorkendorff I (2012) The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew Chem Int Ed 51(19):4641–4643

    Article  Google Scholar 

  78. Wang C, van der Vilet D, Chang KC, You HD, Strmcnik D, Schlueter JA, Markovic NM, Stamenkovic VR (2009) Monodisperse Pt3Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J Phys Chem C 113(45):19365–19368

    Article  Google Scholar 

  79. Wang C, Wang GF, van der Vliet D, Chang KC, Markovic NM, Stamenkovic VR (2010) Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys Chem Chem Phys 12(26):6933–6939

    Article  Google Scholar 

  80. Snyder J, McCue I, Livi K, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134:8633–8645

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Marc Heggen for continuing support in advanced electron microscopy. We also thank the Zentraleinrichtung für Elektronenmikroskopie (Zelmi) of the Technical University Berlin for their support with TEM and EDS techniques. LG thanks Dr. Rong Yu and Prof. Jing Zhu for their previous instructions. PS thanks Dr. Shirlaine Koh, Dr. Chengfei Yu, Dr. Ratndeep Srivastava, Dr. Prasanna Mani, Dr. Zengcai Liu, and Dr. Mehtap Oezaslan for their support over the past years. PS acknowledges financial support through the Cluster of Excellence in Catalysis (UniCat) funded by DFG and managed by TU Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Strasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Gan, L., Strasser, P. (2013). Dealloyed Pt-Based Core–Shell Catalysts for Oxygen Reduction. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics