Skip to main content

Transition Metal Chalcogenides for Oxygen Reduction

  • Chapter
  • First Online:
Electrocatalysis in Fuel Cells

Part of the book series: Lecture Notes in Energy ((LNEN,volume 9))

Abstract

Transition metal chalcogenide materials represent nowadays a new family of alternative materials for the cathode oxygen reduction reaction (ORR). During the last decade, the efforts have been concentrated in developing this kind of materials due to their capacity to remain selective and tolerant in the presence of small organics in acid as well as in alkaline media. This is a good advantage regarding their potential use in low power systems working in mixed reactant conditions. Recent efforts have focused on the discovery and/or modification of sensitive catalytic centers. This chapter adds new challenges for the development of such “sophisticated” materials that become popular in recent years, giving a panorama of the state of the art particularly of nanodivided materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso-Vante N (2011) Structure and reactivity of transition metal chalcogenides toward the molecular oxygen reduction reaction. In: Vayenas CG (ed) Interfacial phenomena in electrocatalysis, vol 51, Modern aspects of electrochemistry. Springer, New York, pp 255–300

    Chapter  Google Scholar 

  2. Baresel D, Sarholz W, Scharner P, Schmitz J (1974) Transition metal chalcogenides as oxygen catalysts for fuel cells. Ber Bunsen-Ges 78(6):608–611

    Google Scholar 

  3. Alonso-Vante N, Tributsch H (1986) Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323(6087):431–432

    Article  Google Scholar 

  4. Fischer C, Alonso-Vante N, Fiechter S, Tributsch H, Reck G, Schulz W (1992) Structure and photoelectrochemical properties of semiconducting rhenium cluster chalcogenides: Re6X8Br2 (X = S, Se). J Alloys Compd 178(1–2):305–314

    Article  Google Scholar 

  5. Alonso-Vante N, Schubert B, Tributsch H (1989) Transition metal cluster materials for multi-electron transfer catalysis. Mater Chem Phys 22(3–4):281–307

    Article  Google Scholar 

  6. Alonso-Vante N (2003) Chevrel phase and cluster-like chalcogenide materials. In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells, vol 2. Wiley, Chichester, pp 534–543

    Google Scholar 

  7. Alonso-Vante N, Tributsch H (1994) Electrode materials and strategies for (photo)electrochemistry. In: Lipkowski J, Ross P (eds) Electrochemistry of novel materials, vol III. VCH, New York, pp 1–63

    Google Scholar 

  8. Alonso-Vante N (2003) Novel nanostructured materials based on transition-metal compounds for electrocatalysis. In: Wieckowski A, Savinova ER, Vayenas CG (eds) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New York, pp 931–958

    Google Scholar 

  9. Feng Y, Alonso-Vante N (2008) Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Stat Sol (b) 245(9):1792–1806

    Article  Google Scholar 

  10. Alonso-Vante N, Giersig M, Tributsch H (1991) Thin layer semiconducting cluster electrocatalysts for oxygen reduction. J Electrochem Soc 138(2):639–640

    Article  Google Scholar 

  11. Alonso-Vante N, Tributsch H, Solorza-Feria O (1995) Kinetics studies of oxygen reduction in acid medium on novel semiconducting transition metal chalcogenides. Electrochim Acta 40(5):567–576

    Article  Google Scholar 

  12. Le Rhun V, Alonso-Vante N (2000) Tailoring of nanodivided electrocatalyst materials based on transition metal. J New Mater Electrochem Syst 3(4):331–336

    Google Scholar 

  13. Alonso-Vante N (1998) Inert for selective oxygen reduction of oxygen and method for the production thereof. Germany Patent WO1997DE02453 19971016; DE19961044628 19961017

    Google Scholar 

  14. Campbell SA (2004) Non-noble metal catalysts for the oxygen reduction reaction. US Patent 7,125,820

    Google Scholar 

  15. Babu PK, Lewera A, Jong HC, Hunger R, Jaegermann W, Alonso-Vante N, Wieckowski A, Oldfield E (2007) Selenium becomes metallic in Ru-Se fuel cell catalysts: an EC-NMR and XPS investigation. J Am Chem Soc 129(49):15140–15141

    Article  Google Scholar 

  16. Lewera A, Inukai J, Zhou WP, Cao D, Duong HT, Alonso-Vante N, Wieckowski A (2007) Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media. Electrochim Acta 52(18):5759–5765

    Article  Google Scholar 

  17. Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI, Alonso-Vante N (2002) In situ EXAFS study to probe active centers of Ru chalcogenide electrocatalysts during oxygen reduction reaction. J Phys Chem B 106(7):1670–1676

    Article  Google Scholar 

  18. Ramaswamy N, Allen RJ, Mukerjee S (2011) Electrochemical kinetics and X-ray absorption spectroscopic investigations of oxygen reduction on chalcogen-modified ruthenium catalysts in alkaline media. J Phys Chem C 115(25):12650–12664.

    Article  Google Scholar 

  19. Feng Y, Gago A, Timperman L, Alonso-Vante N (2010) Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance. Electrochim Acta 56(3):1009–1022

    Article  Google Scholar 

  20. Alonso-Vante N (2003) Physico-chemical properties of novel nanocrystalline ruthenium based chalcogenide materials. In: Kokorin AI, Bahnemann DW (eds) Chemical physics of nanostructured semiconductors. VSP Brill Academic, Zeist, pp 135–152

    Google Scholar 

  21. Alonso-Vante N, Jaegermann W, Tributsch H, Hönle W, Yvon K (1987) Electrocatalysis of oxygen reduction by chalcogenides containing mixed transition metal clusters. J Am Chem Soc 109(11):3251–3257

    Article  Google Scholar 

  22. Alonso-Vante N, Fieber-Erdmann M, Rossner H, Holub-Krappe E, Giorgetti C, Tadjeddine A, Dartyge E, Fontaine A, Frahm R (1997) The catalytic centre of transition metal chalcogenides vis-à-vis the oxygen reduction reaction: an in situ electrochemical EXAFS study. J Phys IV 7(2 Part 2):887–889

    Google Scholar 

  23. Jaegermann W, Pettenkofer C, Alonso-Vante N, Schwarzlose T, Tributsch H (1990) Chevrel phase type compounds: electronic, chemical and structural factors in oxygen reduction electrocatalysis. Ber Bunsen-Ges Phys Chem 94:513–520

    Article  Google Scholar 

  24. Alonso-Vante N, Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI (2002) The structure analysis of the active centers of Ru-containing electrocatalysts for the oxygen reduction. An in situ EXAFS study. Electrochim Acta 47(22–23):3807–3814

    Article  Google Scholar 

  25. Alonso-Vante N, Borthen P, Fieber-Erdmann M, Strehblow HH, Holub-Krappe E (2000) In situ grazing incidence X-ray absorption study of ultra thin RuxSey cluster-like electrocatalyst layers. Electrochim Acta 45(25–26):4227–4236

    Article  Google Scholar 

  26. Solorza-Feria O, Ellmer K, Giersig M, Alonso-Vante N (1994) Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction. Electrochim Acta 39(11–12):1647–1653

    Article  Google Scholar 

  27. Vogel W, Le Rhun V, Garnier E, Alonso-Vante N (2001) Ru clusters synthesized chemically from dissolved carbonyl: in situ study of a novel electrocatalyst in the gas phase and in electrochemical environment. J Phys Chem B 105(22):5238–5243

    Article  Google Scholar 

  28. Zaikovskii VI, Nagabhushana KS, Kriventsov VV, Loponov KN, Cherepanova SV, Kvon RI, Bonnemann H, Kochubey DI, Savinova ER (2006) Synthesis and structural characterization of se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction. J Phys Chem B 110(13):6881–6890

    Article  Google Scholar 

  29. Alonso-Vante N, Zelenay P, Choi JH, Wieckowski A, Cao D (2009) Chalcogen catalysts for polymer electrolyte fuel cell. US Patent 7,588,857

    Google Scholar 

  30. Cao D, Wieckowski A, Inukai J, Alonso-Vante N (2006) Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. J Electrochem Soc 153(5):A869–A874

    Article  Google Scholar 

  31. Vogel W, Kaghazchi P, Jacob T, Alonso-Vante N (2007) Genesis of RuxSey nanoparticles by pyrolysis of Ru4Se2(CO)11: a combined X-ray in situ and DFT study. J Phys Chem C 111:3908–3913

    Article  Google Scholar 

  32. Liu G, Zhang H, Hu JW (2007) Novel synthesis of a highly active carbon-supported Ru85Se15 chalcogenide catalyst for the oxygen reduction reaction. Electrochem Commun 9(11):2643–2648

    Article  Google Scholar 

  33. Zehl G, Schmithals G, Hoell A, Haas S, Hartnig C, Dorbandt I, Bogdanoff P, Fiechter S (2007) On the structure of carbon-supported selenium-modified ruthenium nanoparticles as electrocatalysts for oxygen reduction in fuel cells. Angew Chem Int Ed 46(38):7311–7314

    Article  Google Scholar 

  34. Delacote C, Bonakdarpour A, Johnston CM, Zelenay P, Wieckowski A (2009) Aqueous-based synthesis of ruthenium-selenium catalyst for oxygen reduction reaction. Faraday Discuss 140:269–281

    Article  Google Scholar 

  35. Colmenares L, Jusys Z, Behm RJ (2007) Activity, selectivity, and methanol tolerance of Se-modified Ru/C cathode catalysts. J Phys Chem C 111(3):1273–1283

    Article  Google Scholar 

  36. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81 (13):2819–2822

    Article  Google Scholar 

  37. Stolbov S (2012) Nature of the selenium submonolayer effect on the oxygen electroreduction reaction activity of ru(0001). J Phys Chem C 116 (12):7173–7179.

    Article  Google Scholar 

  38. Tritsaris GA, Nørskov JK, Rossmeisl J (2011) Trends in oxygen reduction and methanol activation on transition metal chalcogenides. Electrochim Acta 56(27):9783–9788

    Article  Google Scholar 

  39. Liu G, Zhang H (2008) Facile synthesis of carbon-supported IrxSey chalcogenide nanoparticles and their electrocatalytic activity for the oxygen reduction reaction. J Phys Chem C 112(6):2058–2065

    Article  Google Scholar 

  40. Lee K, Zhang L, Zhang JJ (2007) A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oxygen reduction. J Power Sources 165(1):108–113

    Article  Google Scholar 

  41. Serov AA, Cho S-Y, Han S, Min M, Chai G, Nam KH, Kwak C (2007) Modification of palladium-based catalysts by chalcogenes for direct methanol fuel cells. Electrochem Commun 9(8):2041–2044

    Article  Google Scholar 

  42. Madhu, Singh RN (2011) Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell. Int J Hydrogen Energy 36(16):10006–10012

    Google Scholar 

  43. Lee K, Zhang L, Zhang JJ (2007) Ternary non-noble metal chalcogenide (W-Co-Se) as electrocatalyst for oxygen reduction reaction. Electrochem Commun 9(7):1704–1708

    Article  MathSciNet  Google Scholar 

  44. Feng Y, He T, Alonso-Vante N (2008) In situ free-surfactant synthesis and ORR- electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles. Chem Mater 20(1):26–28

    Article  Google Scholar 

  45. Feng Y, He T, Alonso-Vante N (2009) Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium. Electrochim Acta 54(22):5252–5256

    Article  Google Scholar 

  46. Alonso-Vante N, Feng Y, He T (2010) Carbon-supported CoSe2 nanoparticles for oxygen reduction and hydrogen evolution in acid environments. USA Patent Application 20100233070

    Google Scholar 

  47. Nekooi P, Akbari M, Amini MK (2010) CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. Int J Hydrogen Energy 35(12):6392–6398

    Article  Google Scholar 

  48. Zhu L, Teo M, Wong PC, Wong KC, Narita I, Ernst F, Mitchell KAR, Campbell SA (2010) Synthesis, characterization of a CoSe2 catalyst for the oxygen reduction reaction. Appl Catal A Gen 386(1–2):157–165

    Article  Google Scholar 

  49. Gochi-Ponce Y, Alonso-Nunez G, Alonso-Vante N (2006) Synthesis and electrochemical characterization of a novel platinum chalcogenide electrocatalyst with an enhanced tolerance to methanol in the oxygen reduction reaction. Electrochem Commun 8(9):1487–1491

    Article  Google Scholar 

  50. Papageorgopoulos DC, Liu F, Conrad O (2007) A study of RhxSy/C and RuSex/C as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications. Electrochim Acta 52(15):4982–4986

    Article  Google Scholar 

  51. Ziegelbauer JM, Gulla AF, O’Laoire C, Urgeghe C, Allen RJ, Mukerjee S (2007) Chalcogenide electrocatalysts for oxygen-depolarized aqueous hydrochloric acid electrolysis. Electrochim Acta 52(21):6282–6294

    Article  Google Scholar 

  52. Ziegelbauer JM, Murthi VS, O’Laoire C, Gullá AF, Mukerjee S (2008) Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications. Electrochim Acta 53(17):5587–5596

    Article  Google Scholar 

  53. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99(1):016105

    Article  Google Scholar 

  54. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on TiO2. J Am Chem Soc 100(1):170–175

    Article  Google Scholar 

  55. Bard AJ, Faulkner LR (2002) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  56. Feng Y, Alonso-Vante N (2012) Carbon-supported Cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium. Electrochim Acta. 72(6):129–133

    Google Scholar 

  57. Feng YJ, He T, Alonso-Vante N (2010) Carbon-supported CoSe2 nanoparticles for oxygen reduction reaction in acid medium. Fuel Cells 10(1):77–83

    Google Scholar 

  58. Timperman L, Gago AS, Alonso-Vante N (2011) Oxygen reduction reaction increased tolerance and fuel cell performance of Pt and RuxSey onto oxide-carbon composites. J Power Sources 196(9):4290–4297

    Article  Google Scholar 

  59. Nekooi P, Amini MK (2010) Effect of support type and synthesis conditions on the oxygen reduction activity of RuxSey catalyst prepared by the microwave polyol method. Electrochim Acta 55(9):3286–3294

    Article  Google Scholar 

  60. Timperman L, Feng YJ, Vogel W, Alonso-Vante N (2010) Substrate effect on oxygen reduction electrocatalysis. Electrochim Acta 55(26):7558–7563

    Article  Google Scholar 

  61. de Tacconi NR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa RS, Basit NA, Rajeshwar K (2006) Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. J Phys Chem B 110(50):25347–25355

    Article  Google Scholar 

  62. Kulesza PJ, Grzybowska B, Malik MA, Galkowski MT (1997) Tungsten oxides as active supports for highly dispersed platinum microcenters: electrocatalytic reactivity toward reduction of hydrogen peroxide and oxygen. J Electrochem Soc 144(6):1911–1917

    Article  Google Scholar 

  63. Kulesza PJ, Miecznikowski K, Baranowska B, Skunik M, Fiechter S, Bogdanoff P, Dorbandt I (2006) Tungsten oxide as active matrix for dispersed carbon-supported RuSex nanoparticles: enhancement of the electrocatalytic oxygen reduction. Electrochem Commun 8(5):904–908

    Article  Google Scholar 

  64. Barczuk PJ, Tsuchiya H, Macak JM, Schmuki P, Szymanska D, Makowski O, Miecznikowski K, Kulesza PJ (2006) Enhancement of the electrocatalytic oxidation of methanol at Pt/Ru nanoparticles immobilized in different WO3 matrices. Electrochem Solid State Lett 9(6):E13–E16

    Article  Google Scholar 

  65. Alonso-Vante N (2010) Platinum and non-platinum nanomaterials for the molecular oxygen reduction reaction. Chemphyschem 11(13):2732–2744

    Article  Google Scholar 

  66. Damjanovic A, Genshaw MA, Bockris JOM (1967) The role of hydrogen peroxide in oxygen reduction at platinum in H2SO4 solution. J Electrochem Soc 114(5):466–472

    Article  Google Scholar 

  67. Damjanovic A, Genshaw MA, Bockris JOM (1967) The mechanism of oxygen reduction at platinum in alkaline solutions with special reference to H2O2. J Electrochem Soc 114(11):1107–1112

    Article  Google Scholar 

  68. Damjanovic A, Genshaw MA, O’M Bockris J (1966) Distinction between intermediates produced in main and side electrodic reactions. J Chem Phys 45(11):4057–4059

    Article  Google Scholar 

  69. Hsueh KL, Gonzalez ER, Srinivasan S (1983) Electrolyte effects on oxygen reduction kinetics at platinum: a rotating ring-disc electrode analysis. Electrochim Acta 28(5):691–697

    Article  Google Scholar 

  70. Bonakdarpour A, Delacote C, Yang R, Wieckowski A, Dahn JR (2008) Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction. Electrochem Commun 10(4):611–615

    Article  Google Scholar 

  71. Bonakdarpour A, Lefevre M, Yang R, Jaouen F, Dahn T, Dodelet J-P, Dahn JR (2008) Impact of loading in RRDE experiments on Fe–N–C catalysts: two- or four-electron oxygen reduction? Electrochem Solid State Lett 11(6):B105–B108

    Article  Google Scholar 

  72. Lefevre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  Google Scholar 

  73. Song C, Zhang L, Zhang J, Wilkinson DP, Baker R (2007) Temperature dependence of oxygen reduction catalyzed by cobalt fluoro-phthalocyanine adsorbed on a graphite electrode. Fuel Cells 7(1):9–15

    Article  Google Scholar 

  74. Tarasevich MR, Sadkowski A, Yeager E (1983) Oxygen electrochemistry. In: Bockris JOM, Conway BE, Yeager E, Khan SUM, White RE (eds) Comprehensive treatise in electrochemistry, vol 7. Plenum, New York, pp 301–398

    Chapter  Google Scholar 

  75. Bursell M, Pirjamali M, Kiros Y (2002) La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes. Electrochim Acta 47(10):1651–1660

    Article  Google Scholar 

  76. Singh RN, Malviya M, Anindita, Sinha ASK, Chartier P (2007) Polypyrrole and La1−xSrxMnO3 (0 ≤ x ≤0.4) composite electrodes for electroreduction of oxygen in alkaline medium. Electrochim Acta 52(12):4264–4271

    Google Scholar 

  77. Ponce J, Rehspringer JL, Poillerat G, Gautier JL (2001) Electrochemical study of nickel–aluminium–manganese spinel NixAl1−xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 46(22):3373–3380

    Article  Google Scholar 

  78. Ríos E, Abarca S, Daccarett P, Nguyen Cong H, Martel D, Marco JF, Gancedo JR, Gautier JL (2008) Electrocatalysis of oxygen reduction on CuxMn3−xO4 (1.0 ≤ x ≤1.4) spinel particles/polypyrrole composite electrodes. Int J Hydrogen Energy 33(19):4945–4954

    Article  Google Scholar 

  79. Restovic A, Ríos E, Barbato S, Ortiz J, Gautier JL (2002) Oxygen reduction in alkaline medium at thin MnxCo3−xO4 (0 ≤ x ≤ 1) spinel films prepared by spray pyrolysis. Effect of oxide cation composition on the reaction kinetics. J Electroanal Chem 522(2):141–151

    Article  Google Scholar 

  80. Zei MS, Ertl G (2000) Structural changes of a Ru(0001) surface under the influence of electrochemical reactions. Phys Chem Chem Phys 2(17):3855–3859

    Article  Google Scholar 

  81. Stephens-Romero S, Carreras-Sospedra M, Brouwer J, Dabdub D, Samuelsen S (2009) Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles. Environ Sci Technol 43(23):9022–9029

    Article  Google Scholar 

  82. Trasatti S (1995) Electrochemistry and environment: the role of electrocatalysis. Int J Hydrogen Energy 20(10):835–844

    Article  Google Scholar 

  83. McIntyre DR, Burstein GT, Vossen A (2002) Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide. J Power Sources 107(1):67–73

    Article  Google Scholar 

  84. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675

    Article  Google Scholar 

  85. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31

    Google Scholar 

  86. Scott K, Shukla AK, Jackson CL, Meuleman WRA (2004) A mixed-reactants solid-polymer-electrolyte direct methanol fuel cell. J Power Sources 126(1–2):67–75

    Article  Google Scholar 

  87. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170(1):1–12

    Article  Google Scholar 

  88. Gago AS, Morales-Acosta D, Arriaga LG, Alonso-Vante N (2011) Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell. J Power Sources 196(3):1324–1328

    Article  Google Scholar 

  89. Gago AS, Arriaga LG, Gochi-Ponce Y, Feng YJ, Alonso-Vante N (2010) Oxygen reduction reaction selectivity of RuxSey in formic acid solutions. J Electroanal Chem 648(1):78–84

    Article  Google Scholar 

  90. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182(1):124–132

    Article  Google Scholar 

  91. Kim J, Jung C, Rhee CK, T-h L (2007) Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111). Langmuir 23(21):10831–10836

    Article  Google Scholar 

  92. Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111(1):83–89

    Article  Google Scholar 

  93. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1994) Electrooxidation of small organic-molecules on well-characterized Pt-Ru alloys. Electrochim Acta 39(11–12):1825–1832

    Article  Google Scholar 

  94. Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloys Compd 461(1–2):253–262

    Article  Google Scholar 

  95. Colón-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155(2):253–263

    Article  Google Scholar 

  96. Wang R-F, Liao S-J, Liu H-Y, Meng H (2007) Synthesis and characterization of Pt-Se/C electrocatalyst for oxygen reduction and its tolerance to methanol. J Power Sources 171(2):471–476

    Article  Google Scholar 

  97. Cheng H, Yuan W, Scott K, Browning DJ, Lakeman JB (2007) The catalytic activity and methanol tolerance of transition metal modified-ruthenium-selenium catalysts. Appl Catal B Environ 75(3–4):221–228

    Article  Google Scholar 

  98. Gao M-R, Gao Q, Jiang J, Cui C-H, Yao W-T, Yu S-H (2011) A methanol-tolerant Pt/CoSe2 nanobelt cathode catalyst for direct methanol fuel cells. Angew Chem Int Ed 50(21):4905–4908

    Article  Google Scholar 

Download references

Acknowledgments

The author warmly thanks the various contributions made during the years from his students and collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Alonso-Vante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Alonso-Vante, N. (2013). Transition Metal Chalcogenides for Oxygen Reduction. In: Shao, M. (eds) Electrocatalysis in Fuel Cells. Lecture Notes in Energy, vol 9. Springer, London. https://doi.org/10.1007/978-1-4471-4911-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4911-8_14

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4910-1

  • Online ISBN: 978-1-4471-4911-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics