Skip to main content

Ca2+ Release Channels (Ryanodine Receptors) and Arrhythmogenesis

  • Chapter
  • First Online:
Electrical Diseases of the Heart

Abstract

Intracellular calcium (Ca2+) release channels (ryanodine receptors type 2, RyR2) are present on the sarcoplasmic reticulum (SR) in cardiomyocytes and are required for excitation-contraction coupling in cardiac muscle. RyR2s are macromolecular channel complexes associated with regulatory proteins that modulate RyR2 function in response to extracellular signals. Recent studies have provided new mechanistic insight into the role of diastolic SR Ca2+ leak through RyR2 as a trigger for a wide range of cardiac arrhythmias. RyR2 has been implicated to play a central role in arrhythmias associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), heart failure (HF) and drug-induced arrhythmias. At present, there is no FDA approved medication that selectively targets RyR2. However, novel therapeutic approaches are being evaluated to correct defective RyR2 Ca2+ release based on recent advances in the understanding of the cellular mechanisms underlying arrhythmias in HF and CPVT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jayaraman T, Brillantes AM, Timerman AP, et al. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem. 1992;267:9474–7.

    PubMed  CAS  Google Scholar 

  2. Marx SO, Reiken S, Hisamatsu Y, et al. Phosphorylation-dependent regulation of ryanodine receptors. A novel role for leucine/isoleucine zippers. J Cell Biol. 2001;153:699–708.

    Article  PubMed  CAS  Google Scholar 

  3. Priori SG, Chen SR. Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res. 2011;108:871–83.

    Article  PubMed  CAS  Google Scholar 

  4. Kubalova Z, Terentyev D, Viatchenko-Karpinski S, et al. Abnormal intrastore calcium signaling in chronic heart failure. Proc Natl Acad Sci USA. 2005;102:14104–9.

    Article  PubMed  CAS  Google Scholar 

  5. Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000;101:365–76.

    Article  PubMed  CAS  Google Scholar 

  6. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res. 2005;97:1314–22.

    Article  PubMed  CAS  Google Scholar 

  7. Shannon TR, Pogwizd SM, Bers DM. Elevated sarcoplasmic reticulum Ca2+ leak in intact ventricular myocytes from rabbits in heart failure. Circ Res. 2003;93:592–4.

    Article  PubMed  CAS  Google Scholar 

  8. Belevych AE, Terentyev D, Terentyeva R, et al. The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res. 2011;90:493–502.

    Article  PubMed  CAS  Google Scholar 

  9. Pogwizd SM, Bers DM. Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med. 2004;14:61–6.

    Article  PubMed  CAS  Google Scholar 

  10. Yano M, Kobayashi S, Kohno M, et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation. 2003;107:477–84.

    Article  PubMed  CAS  Google Scholar 

  11. Kohno M, Yano M, Kobayashi S, et al. A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am J Physiol Heart Circ Physiol. 2003;284:H1035–42.

    PubMed  CAS  Google Scholar 

  12. Wehrens XH, Lehnart SE, Reiken SR, et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science. 2004;304:292–6.

    Article  PubMed  CAS  Google Scholar 

  13. Wehrens XH, Lehnart SE, Reiken S, et al. Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function in heart failure. Proc Natl Acad Sci USA. 2005;102:9607–12.

    Article  PubMed  CAS  Google Scholar 

  14. Liu N, Colombi B, Memmi M, et al. Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia: insights from a RyR2 R4496C knock-in mouse model. Circ Res. 2006;99:292–8.

    Article  PubMed  CAS  Google Scholar 

  15. Sedej S, Heinzel FR, Walther S, et al. Na+−dependent SR Ca2+ overload induces arrhythmogenic events in mouse cardiomyocytes with a human CPVT mutation. Cardiovasc Res. 2010;87:50–9.

    Article  PubMed  CAS  Google Scholar 

  16. Fauconnier J, Thireau J, Reiken S, et al. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc Natl Acad Sci USA. 2010;107:1559–64.

    Article  PubMed  CAS  Google Scholar 

  17. Watanabe H, Chopra N, Laver D, et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med. 2009;15:380–3.

    Article  PubMed  CAS  Google Scholar 

  18. Biernacka EK, Hoffman P. Efficacy of flecainide in a patient with catecholaminergic polymorphic ventricular tachycardia. Europace. 2011;13:129–30.

    Article  PubMed  Google Scholar 

  19. Zhou Q, Xiao J, Jiang D, et al. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat Med. 2011;17:1003–9.

    Article  PubMed  CAS  Google Scholar 

  20. Nabauer M, Callewart G, Cleeman L, Morad M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac, myocytes. Science. 1989;244:800–3.

    Article  PubMed  CAS  Google Scholar 

  21. Wehrens XH, Ather S, Dobrev D. Abnormal sarcoplasmic function in atrial fibrillation. Therapy. 2010;7:147–58.

    Article  CAS  Google Scholar 

  22. Bers DM, Guo T. Calcium signaling in cardiac ventricular myocytes. Ann N Y Acad Sci. 2005;1047:86–98.

    Article  PubMed  CAS  Google Scholar 

  23. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac purkinje cell. J Gen Physiol. 1985;85:247–89.

    Article  PubMed  CAS  Google Scholar 

  24. Wehrens XHT, Lehnart SE, Marks AR. Intracellular calcium release channels and cardiac disease. Annu Rev Physiol. 2005;67:69–98.

    Article  PubMed  CAS  Google Scholar 

  25. Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993;262:740–4.

    Article  PubMed  CAS  Google Scholar 

  26. Lindegger N, Niggli E. Paradoxical SR Ca2+ release in guinea-pig cardiac myocytes after b-adrenergic stimulation revealed by two-photon photolysis of caged Ca2+. J Physiol. 2005;565:801–13.

    Article  PubMed  CAS  Google Scholar 

  27. Cannell MB, Cheng H, Lederer WJ. The control of calcium release in heart muscle. Science. 1995;268:1045–9.

    Article  PubMed  CAS  Google Scholar 

  28. Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res. 2001;88:1151–8.

    Article  PubMed  CAS  Google Scholar 

  29. Brochet DX, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H. Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci USA. 2005;102:3099–104.

    Article  PubMed  CAS  Google Scholar 

  30. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem. 1990;265:13472–83.

    PubMed  CAS  Google Scholar 

  31. Tunwell RE, Wickenden C, Bertrand BM, et al. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem J. 1996;318:477–87.

    PubMed  CAS  Google Scholar 

  32. Yano M, Yamamoto T, Ikeda Y, Matsuzaki M. Mechanisms of disease: ryanodine receptor defects in heart failure and fatal arrhythmia. Nat Clin Pract Cardiovasc Med. 2006;3:43–52.

    Article  PubMed  CAS  Google Scholar 

  33. Kushnir A, Betzenhauser MJ, Marks AR. Ryanodine receptor studies using genetically engineered mice. FEBS Lett. 2010;584:1956–65.

    Article  PubMed  CAS  Google Scholar 

  34. Wehrens XH. CaMKII regulation of the cardiac ryanodine receptor and sarcoplasmic reticulum calcium release. Heart Rhythm. 2011;8:323–5.

    Article  PubMed  Google Scholar 

  35. Marks AR, Tempst P, Hwang KS, et al. Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci USA. 1989;86:8683–7.

    Article  PubMed  CAS  Google Scholar 

  36. Lam E, Martin MM, Timerman AP, et al. A novel FK506 binding protein can mediate the immunosuppressive effects of FK506 and is associated with the cardiac ryanodine receptor. J Biol Chem. 1995;270:26511–22.

    Article  PubMed  CAS  Google Scholar 

  37. Brillantes AB, Ondrias K, Scott A, et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell. 1994;77:513–23.

    Article  PubMed  CAS  Google Scholar 

  38. Wehrens XH, Lehnart SE, Huang F, et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell. 2003;113:829–40.

    Article  PubMed  CAS  Google Scholar 

  39. Lehnart SE, Huang F, Marx SO, Marks AR. Immunophilins and coupled gating of ryanodine receptors. Curr Top Med Chem. 2003;3:1383–91.

    Article  PubMed  CAS  Google Scholar 

  40. Chu A, Sumbilla C, Inesi G, Jay SD, Campbell KP. Specific association of calmodulin-dependent protein kinase and related substrates with the junctional sarcoplasmic reticulum of skeletal muscle. Biochemistry. 1990;29:5899–905.

    Article  PubMed  CAS  Google Scholar 

  41. Meyers MB, Pickel VM, Sheu SS, Sharma VK, Scotto KW, Fishman GI. Association of sorcin with the cardiac ryanodine receptor. J Biol Chem. 1995;270:26411–8.

    Article  PubMed  CAS  Google Scholar 

  42. Currie S, Loughrey CM, Craig MA, Smith GL. Calcium/calmodulin-dependent protein kinase IIdelta associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochem J. 2004;377:357–66.

    Article  PubMed  CAS  Google Scholar 

  43. Wehrens XH, Lehnart SE, Reiken SR, Marks AR. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res. 2004;94:e61–70.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem. 1997;272:23389–97.

    Article  PubMed  CAS  Google Scholar 

  45. Gyorke I, Hester N, Jones LR, Gyorke S. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J. 2004;86:2121–8.

    Article  PubMed  Google Scholar 

  46. Terentyev D, Viatchenko-Karpinski S, Gyorke I, Volpe P, Williams SC, Gyorke S. Calsequestrin determines the functional size and stability of cardiac intracellular calcium stores: mechanism for hereditary arrhythmia. Proc Natl Acad Sci USA. 2003;100:11759–64.

    Article  PubMed  CAS  Google Scholar 

  47. Jiang D, Wang R, Xiao B, et al. Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. Circ Res. 2005;97:1173–81.

    Article  PubMed  CAS  Google Scholar 

  48. van Oort RJ, McCauley MD, Dixit SS, et al. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation. 2010;122:2669–79.

    Article  PubMed  CAS  Google Scholar 

  49. Stull LB, Leppo MK, Marban E, Janssen PM. Physiological determinants of contractile force generation and calcium handling in mouse myocardium. J Mol Cell Cardiol. 2002;34:1367–76.

    Article  PubMed  CAS  Google Scholar 

  50. Braz JC, Gregory K, Pathak A, et al. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med. 2004;10:248–54.

    Article  PubMed  CAS  Google Scholar 

  51. Lefkowitz RJ, Rockman HA, Koch WJ. Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation. 2000;101:1634–7.

    Article  PubMed  CAS  Google Scholar 

  52. Jones LR, Simmerman HK, Wilson WW, Gurd FR, Wegener AD. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem. 1985;260:7721–30.

    PubMed  CAS  Google Scholar 

  53. Gomez AM, Valdivia HH, Cheng H, et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 1997;276:800–6.

    Article  PubMed  CAS  Google Scholar 

  54. Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem. 1995;270:2074–81.

    Article  PubMed  CAS  Google Scholar 

  55. Valdivia HH, Kaplan JH, Ellis-Davies GC, Lederer WJ. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science. 1995;267:1997–2000.

    Article  PubMed  CAS  Google Scholar 

  56. Xiao J, Tian X, Jones PP, et al. Removal of FKBP12.6 does not alter the conductance and activation of the cardiac ryanodine receptor or the susceptibility to stress-induced ventricular arrhythmias. J Biol Chem. 2007;282:34828–38.

    Article  PubMed  CAS  Google Scholar 

  57. Danila CI, Hamilton SL. Phosphorylation of ryanodine receptors. Biol Res. 2004;37:521–5.

    Article  PubMed  Google Scholar 

  58. Xiao B, Sutherland C, Walsh MP, Chen SR. Protein kinase A phosphorylation at serine-2808 of the cardiac Ca2+−release channel (ryanodine receptor) does not dissociate 12.6-kDa FK506-binding protein (FKBP12.6). Circ Res. 2004;94:487–95.

    Article  PubMed  CAS  Google Scholar 

  59. Xiao B, Jiang MT, Zhao M, et al. Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ Res. 2005;96:847–55.

    Article  PubMed  CAS  Google Scholar 

  60. Wehrens XH, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci USA. 2006;103:511–8.

    Article  PubMed  CAS  Google Scholar 

  61. Lokuta AJ, Rogers TB, Lederer WJ, Valdivia HH. Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-­dephosphorylation mechanism. J Physiol. 1995;487:609–22.

    PubMed  CAS  Google Scholar 

  62. Lehnart SE, Wehrens XH, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell. 2005;123:25–35.

    Article  PubMed  CAS  Google Scholar 

  63. Kushnir A, Shan J, Betzenhauser MJ, Reiken S, Marks AR. Role of CaMKIIdelta phosphorylation of the cardiac ryanodine receptor in the force frequency relationship and heart failure. Proc Natl Acad Sci USA. 2010;107:10274–9.

    Article  PubMed  CAS  Google Scholar 

  64. Yano M, Okuda S, Oda T, et al. Correction of defective interdomain interaction within ryanodine receptor by antioxidant is a new therapeutic strategy against heart failure. Circulation. 2005;112:3633–43.

    Article  PubMed  CAS  Google Scholar 

  65. Aghdasi B, Reid MB, Hamilton SL. Nitric oxide protects the skeletal muscle Ca2+ release channel from oxidation induced activation. J Biol Chem. 1997;272:25462–7.

    Article  PubMed  CAS  Google Scholar 

  66. Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med. 2011;50:777–93.

    Article  PubMed  CAS  Google Scholar 

  67. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 1998;279:234–7.

    Article  PubMed  CAS  Google Scholar 

  68. Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM. S-Nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol. 2009;54:188–95.

    Article  PubMed  CAS  Google Scholar 

  69. Hidalgo C, Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:1275–312.

    Article  PubMed  CAS  Google Scholar 

  70. Zima AV, Blatter LA. Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res. 2006;71:310–21.

    Article  PubMed  CAS  Google Scholar 

  71. Abramson JJ, Salama G. Sulfhydryl oxidation and Ca2+ release from sarcoplasmic reticulum. Mol Cell Biochem. 1988;82:81–4.

    Article  PubMed  CAS  Google Scholar 

  72. Eager KR, Roden LD, Dulhunty AF. Actions of sulfhydryl reagents on single ryanodine receptor Ca(2+)-release channels from sheep myocardium. Am J Physiol. 1997;272:C1908–18.

    PubMed  CAS  Google Scholar 

  73. Marengo JJ, Hidalgo C, Bull R. Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys J. 1998;74:1263–77.

    Article  PubMed  CAS  Google Scholar 

  74. Feron O, Saldana F, Michel JB, Michel T. The endothelial nitric-oxide synthase-caveolin regulatory cycle. J Biol Chem. 1998;273:3125–8.

    Article  PubMed  CAS  Google Scholar 

  75. Garcia-Cardena G, Martasek P, Masters BS, et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem. 1997;272:25437–40.

    Article  PubMed  CAS  Google Scholar 

  76. Hare JM, Lofthouse RA, Juang GJ, et al. Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failure. Circ Res. 2000;86:1085–92.

    Article  PubMed  CAS  Google Scholar 

  77. Schwencke C, Yamamoto M, Okumura S, Toya Y, Kim SJ, Ishikawa Y. Compartmentation of cyclic adenosine 3’,5’-monophosphate signaling in caveolae. Mol Endocrinol. 1999;13:1061–70.

    Article  PubMed  CAS  Google Scholar 

  78. Hare JM, Givertz MM, Creager MA, Colucci WS. Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure: potentiation of beta-adrenergic inotropic responsiveness. Circulation. 1998;97:161–6.

    Article  PubMed  CAS  Google Scholar 

  79. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA. 1999;96:657–62.

    Article  PubMed  CAS  Google Scholar 

  80. Eu JP, Sun J, Xu L, Stamler JS, Meissner G. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell. 2000;102:499–509.

    Article  PubMed  CAS  Google Scholar 

  81. Barouch LA, Harrison RW, Skaf MW, et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature. 2002;416:337–9.

    Article  PubMed  CAS  Google Scholar 

  82. Cherednichenko G, Zima AV, Feng W, Schaefer S, Blatter LA, Pessah IN. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates ­calcium-induced calcium release. Circ Res. 2004;94:478–86.

    Article  PubMed  CAS  Google Scholar 

  83. Sanchez G, Pedrozo Z, Domenech RJ, Hidalgo C, Donoso P. Tachycardia increases NADPH oxidase activity and RyR2 S-glutathionylation in ventricular muscle. J Mol Cell Cardiol. 2005;39:982–91.

    Article  PubMed  CAS  Google Scholar 

  84. Hidalgo C, Sanchez G, Barrientos G, Aracena-Parks P. A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S -glutathionylation. J Biol Chem. 2006;281:26473–82.

    Article  PubMed  CAS  Google Scholar 

  85. Khan SA, Lee K, Minhas KM, et al. Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci USA. 2004;101:15944–8.

    Article  PubMed  CAS  Google Scholar 

  86. Rubart M, Zipes DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005;115:2305–15.

    Article  PubMed  CAS  Google Scholar 

  87. Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421:634–9.

    Article  PubMed  CAS  Google Scholar 

  88. Qin D, Zhang ZH, Caref EB, Boutjdir M, Jain P, el-Sherif N. Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium. Circ Res. 1996;79:461–73.

    Article  PubMed  CAS  Google Scholar 

  89. Subramanian S, Viatchenko-Karpinski S, Lukyanenko V, Gyorke S, Wiesner TF. Underlying mechanisms of symmetric calcium wave propagation in rat ventricular myocytes. Biophys J. 2001;80:1–11.

    Article  PubMed  CAS  Google Scholar 

  90. Lehnart SE, Mongillo M, Bellinger A, et al. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest. 2008;118:2230–45.

    PubMed  CAS  Google Scholar 

  91. McGarry SJ, Williams AJ. Digoxin activates sarcoplasmic reticulum Ca(2+)-release channels: a possible role in cardiac inotropy. Br J Pharmacol. 1993;108:1043–50.

    Article  PubMed  CAS  Google Scholar 

  92. Wallukat G. The beta-adrenergic receptors. Herz. 2002;27:683–90.

    Article  PubMed  Google Scholar 

  93. Belevych A, Kubalova Z, Terentyev D, Hamlin RL, Carnes CA, Gyorke S. Enhanced ryanodine receptor-mediated calcium leak determines reduced sarcoplasmic reticulum calcium content in chronic canine heart failure. Biophys J. 2007;93:4083–92.

    Article  PubMed  CAS  Google Scholar 

  94. Sag CM, Wadsack DP, Khabbazzadeh S, et al. Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ Heart Fail. 2009;2:664–75.

    Article  PubMed  CAS  Google Scholar 

  95. Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74.

    Article  PubMed  CAS  Google Scholar 

  96. Sumitomo N, Harada K, Nagashima M, et al. Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart. 2003;89:66–70.

    Article  PubMed  CAS  Google Scholar 

  97. Mohamed U, Napolitano C, Priori SG. Molecular and electrophysiological bases of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 2007;18:791–7.

    Article  PubMed  Google Scholar 

  98. Trafford AW, Diaz ME, Sibbring GC, Eisner DA. Modulation of CICR has no maintained effect on systolic Ca2+: simultaneous measurements of sarcoplasmic reticulum and sarcolemmal Ca2+ fluxes in rat ventricular myocytes. J Physiol. 2000;522(Pt 2):259–70.

    Article  PubMed  CAS  Google Scholar 

  99. Tateishi H, Yano M, Mochizuki M, et al. Defective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca2+ leak in failing hearts. Cardiovasc Res. 2009;81:536–45.

    Article  PubMed  CAS  Google Scholar 

  100. Uchinoumi H, Yano M, Suetomi T, et al. Catecholaminergic polymorphic ventricular tachycardia is caused by mutation-linked defective conformational regulation of the ryanodine receptor. Circ Res. 2010;106:1413–24.

    Article  PubMed  CAS  Google Scholar 

  101. Suetomi T, Yano M, Uchinoumi H, et al. Mutation-linked defective interdomain interactions within ryanodine receptor cause aberrant Ca(2)release leading to catecholaminergic polymorphic ventricular tachycardia. Circulation. 2011;124:682–94.

    Article  PubMed  CAS  Google Scholar 

  102. George CH, Higgs GV, Lai FA. Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes. Circ Res. 2003;93:531–40.

    Article  PubMed  CAS  Google Scholar 

  103. Oda T, Yano M, Yamamoto T, et al. Defective regulation of interdomain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure. Circulation. 2005;111:3400–10.

    Article  PubMed  CAS  Google Scholar 

  104. Terentyev D, Nori A, Santoro M, et al. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ Res. 2006;98:1151–8.

    Article  PubMed  CAS  Google Scholar 

  105. Tiso N, Stephan DA, Nava A, et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001;10:189–94.

    Article  PubMed  CAS  Google Scholar 

  106. Bauce B, Nava A, Rampazzo A, et al. Familial effort polymorphic ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy map to chromosome 1q42-43. Am J Cardiol. 2000;85:573–9.

    Article  PubMed  CAS  Google Scholar 

  107. Koop A, Goldmann P, Chen SR, Thieleczek R, Varsanyi M. ARVC-related mutations in divergent region 3 alter functional properties of the cardiac ryanodine receptor. Biophys J. 2008;94:4668–77.

    Article  PubMed  CAS  Google Scholar 

  108. Ather S, Peterson LE, Divakaran VG, et al. Digoxin treatment in heart failure – unveiling risk by cluster analysis of DIG data. Int J Cardiol. 2011;150:264–9.

    Article  PubMed  Google Scholar 

  109. Mozaffarian D, Anker SD, Anand I, et al. Prediction of mode of death in heart failure: the Seattle Heart Failure Model. Circulation. 2007;116:392–8.

    Article  PubMed  Google Scholar 

  110. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–209.

    Article  PubMed  Google Scholar 

  111. Bers DM, Eisner DA, Valdivia HH. Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ Res. 2003;93:487–90.

    Article  PubMed  CAS  Google Scholar 

  112. Ter Keurs HE, Boyden PA. Calcium and arrhythmogenesis. Physiol Rev. 2007;87:457–506.

    Article  PubMed  CAS  Google Scholar 

  113. Xie LH, Weiss JN. Arrhythmogenic consequences of intracellular calcium waves. Am J Physiol Heart Circ Physiol. 2009;297:H997–1002.

    Article  PubMed  CAS  Google Scholar 

  114. Gyorke S, Gyorke I, Lukyanenko V, Terentyev D, Viatchenko-Karpinski S, Wiesner TF. Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle. Front Biosci. 2002;7:d1454–63.

    Article  PubMed  CAS  Google Scholar 

  115. Trafford AW, Diaz ME, O’Neill SC, Eisner DA. Integrative analysis of calcium signalling in cardiac muscle. Front Biosci. 2002;7:d843–52.

    Article  PubMed  CAS  Google Scholar 

  116. Reiken S, Wehrens XH, Vest JA, et al. Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation. 2003;107:2459–66.

    Article  PubMed  CAS  Google Scholar 

  117. Swaminathan PD, Purohit A, Soni S, et al. Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest. 2011;121:3277–88.

    Article  PubMed  CAS  Google Scholar 

  118. Terentyev D, Gyorke I, Belevych AE, et al. Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res. 2008;103:1466–72.

    Article  PubMed  CAS  Google Scholar 

  119. Groh WJ, Zipes DL. Neurological disorders and cardiovascular disease. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. 9th ed. Philadelphia: Saunders; 2011. p. 1916–9.

    Google Scholar 

  120. Lapidos KA, Kakkar R, McNally EM. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res. 2004;94:1023–31.

    Article  PubMed  CAS  Google Scholar 

  121. Jung C, Martins AS, Niggli E, Shirokova N. Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways. Cardiovasc Res. 2008;77:766–73.

    Article  PubMed  CAS  Google Scholar 

  122. Chelu MG, Sarma S, Sood S, et al. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest. 2009;119:1940–51.

    PubMed  CAS  Google Scholar 

  123. Neef S, Dybkova N, Sossalla S, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106:1134–44.

    Article  PubMed  CAS  Google Scholar 

  124. Vest JA, Wehrens XH, Reiken SR, et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation. 2005;111:2025–32.

    Article  PubMed  CAS  Google Scholar 

  125. Mathur N, Sood S, Wang S, et al. Sudden infant death syndrome in mice with an inherited mutation in RyR2. Circ Arrhythm Electrophysiol. 2009;2:677–85.

    Article  PubMed  CAS  Google Scholar 

  126. Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103:196–200.

    Article  PubMed  CAS  Google Scholar 

  127. Thireau J, Pasquie JL, Martel E, Le Guennec JY, Richard S. New drugs vs. old concepts: a fresh look at antiarrhythmics. Pharmacol Ther. 2011;132:125–45.

    Article  PubMed  CAS  Google Scholar 

  128. Kaneko N, Matsuda R, Hata Y, Shimamoto K. Pharmacological characteristics and clinical applications of K201. Curr Clin Pharmacol. 2009;4:126–31.

    Article  PubMed  CAS  Google Scholar 

  129. Kaneko N, Matsuda R, Toda M, Shimamoto K. Inhibition of annexin V-dependent Ca2+ movement in large unilamellar vesicles by K201, a new 1,4-benzothiazepine derivative. Biochim Biophys Acta. 1997;1330:1–7.

    Article  PubMed  CAS  Google Scholar 

  130. Hunt DJ, Jones PP, Wang R, et al. K201 (JTV519) suppresses spontaneous Ca2+ release and [3H]ryanodine binding to RyR2 irrespective of FKBP12.6 association. Biochem J. 2007;404:431–8.

    Article  PubMed  CAS  Google Scholar 

  131. Yamamoto T, Yano M, Xu X, et al. Identification of target domains of the cardiac ryanodine receptor to correct channel disorder in failing hearts. Circulation. 2008;117:762–72.

    Article  PubMed  CAS  Google Scholar 

  132. Hasumi H, Matsuda R, Shimamoto K, Hata Y, Kaneko N. K201, a multi-channel blocker, inhibits clofilium-induced torsades de pointes and attenuates an increase in repolarization. Eur J Pharmacol. 2007;555:54–60.

    Article  PubMed  CAS  Google Scholar 

  133. Bellinger AM, Reiken S, Dura M, et al. Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci USA. 2008;105:2198–202.

    Article  PubMed  CAS  Google Scholar 

  134. Miller JM, Zipes DP. Therapy for cardiac arrhythmias. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine, vol. 11. Philadelphia: Elsevier Saunders; 2011. p. 710–44.

    Google Scholar 

  135. Anderson JL, Stewart JR, Perry BA, et al. Oral flecainide acetate for the treatment of ventricular arrhythmias. N Engl J Med. 1981;305:473–7.

    Article  PubMed  CAS  Google Scholar 

  136. Anderson JL, Gilbert EM, Alpert BL, et al. Prevention of symptomatic recurrences of paroxysmal atrial fibrillation in patients initially tolerating antiarrhythmic therapy. A multicenter, double-blind, crossover study of flecainide and placebo with transtelephonic monitoring. Flecainide Supraventricular Tachycardia Study Group. Circulation. 1989;80:1557–70.

    Article  PubMed  CAS  Google Scholar 

  137. Hilliard FA, Steele DS, Laver D, et al. Flecainide inhibits arrhythmogenic Ca2+ waves by open state block of ryanodine receptor Ca2+ release channels and reduction of Ca2+ spark mass. J Mol Cell Cardiol. 2010;48:293–301.

    Article  PubMed  CAS  Google Scholar 

  138. Muhiddin K, Nathan AW, Hellestrand KJ, Banim SO, Camm AJ. Ventricular tachycardia associated with flecainide. Lancet. 1982;2:1220–1.

    Article  PubMed  CAS  Google Scholar 

  139. Brembilla-Perrot B, Amor M, Auque F, et al. Effect of flecainide on left ventricular ejection fraction. Eur Heart J. 1987;8:754–61.

    Article  PubMed  CAS  Google Scholar 

  140. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N Engl J Med. 1989;321:406–12.

    Google Scholar 

  141. van der Werf C, Kannankeril PJ, Sacher F, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011;57:2244–54.

    Article  PubMed  CAS  Google Scholar 

  142. Frishman WH. Carvedilol. N Engl J Med. 1998;339:1759–65.

    Article  PubMed  CAS  Google Scholar 

  143. Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:e391–479.

    Article  PubMed  Google Scholar 

  144. Remme WJ, Cleland JG, Erhardt L, et al. Effect of carvedilol and metoprolol on the mode of death in patients with heart failure. Eur J Heart Fail. 2007;9:1128–35.

    Article  PubMed  CAS  Google Scholar 

  145. Mochizuki M, Yano M, Oda T, et al. Scavenging free radicals by low-dose carvedilol prevents redox-dependent Ca2+ leak via stabilization of ryanodine receptor in heart failure. J Am Coll Cardiol. 2007;49:1722–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment.

X.H.T.W. is a W.M. Keck Foundation Distinguished Young Scholar in Medical Research, and is supported by NIH/NHLBI grants R01-HL089598 and R01-HL091947, and Muscular Dystrophy Association grant #69,238. S.A. is supported by American Heart Association SCA predoctoral fellowship (2010–2012) and fellowship from Alkek foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xander H. T. Wehrens MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Ather, S., Wehrens, X.H.T. (2013). Ca2+ Release Channels (Ryanodine Receptors) and Arrhythmogenesis. In: Gussak, I., Antzelevitch, C. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-4471-4881-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4881-4_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4880-7

  • Online ISBN: 978-1-4471-4881-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics