Skip to main content

Padé Interpolation for Elliptic Painlevé Equation

  • Conference paper
Symmetries, Integrable Systems and Representations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 40))

Abstract

An interpolation problem related to the elliptic Painlevé equation is formulated and solved. A simple form of the elliptic Painlevé equation and the Lax pair are obtained. Explicit determinant formulae of special solutions are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Though all the directions are equivalent due to the Bäcklund transformations, there exists one special direction in the formulation on ℙ1×ℙ1 for which the equation takes a simple form like QRT system [11]. Jimbo-Sakai’s q-Painlevé six equation [3] is a typical example of such beautiful equations. For various q-difference cases, the Lax formalisms for such direction were studied in [21].

  2. 2.

    The choice of parameters c 1,…,c 4 (and over all normalization of f (x), g (x)) is related to the fractional linear transformations on ℙ1×ℙ1.

  3. 3.

    Since the contiguity relations (14), (15) are similar to the linear relations of the R II chains [17], it may be possible to derive them as a reduction of three discrete-time non-autonomous Toda chain by using the method in [18].

  4. 4.

    Since the elliptic Painlevé equation [14] is rather complicated, its concise expressions have been pursued by several authors (e.g. [810]). The system (39), (40) is supposed to be the simplest one.

  5. 5.

    This geometric characterization of the difference equation L 1 is essentially the same as that in [20].

References

  1. Date, E., Jimbo, M., Kuniba, A., Miwa, T., Okado, M.: Exactly solvable SOS models II: Proof of the star-triangle relation and combinatorial identities. In: Adv. Stud. Pure Math., vol. 16, pp. 17–122. Academic Press, Boston (1988)

    Google Scholar 

  2. Frenkel, I.B., Turaev, V.G.: Elliptic solutions of the Yang-Baxter equation and modular hypergeometric functions. In: Arnold, I., et al. (eds.) The Arnold-Gelfand Mathematical Seminars, pp. 171–204. Birkhäuser, Boston (1997)

    Chapter  Google Scholar 

  3. Jimbo, M., Sakai, H.: A q-analog of the sixth Painlevé equation. Lett. Math. Phys. 38, 145–154 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kajiwara, K., Masuda, T., Noumi, M., Ohta, Y., Yamada, Y.: 10 E 9 solution to the elliptic Painlevé equation. J. Phys. A 36, L263–L272 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kajiwara, K., Masuda, T., Noumi, M., Ohta, Y., Yamada, Y.: Hypergeometric solutions to the q-Painlevé equations. Int. Math. Res. Not. 47, 2497–2521 (2004)

    Article  MathSciNet  Google Scholar 

  6. Magnus, A.: Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57, 215–237 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Masuda, T.: Hypergeometric τ-functions of the q-Painlevé system of type \(E^{(1)}_{8}\). Ramanujan J. 24, 1–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Murata, M.: New expressions for discrete Painlevé equations. Funkc. Ekvacioj 47, 291–305 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Murata, M., Sakai, H., Yoneda, J.: Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type \(E_{8}^{(1)}\). J. Math. Phys. 44, 1396–1414 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ohta, Y., Ramani, A., Grammaticos, B.: An affine Weyl group approach to the eight-parameter discrete Painlevé equation. J. Phys. A 34, 10523–10532 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Quispel, G.R.W., Roberts, J.A.G., Thompson, C.J.: Integrable mappings and soliton equations. Phys. Lett. A 126, 419–421 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rains, E.: Recurrences for elliptic hypergeometric integrals. Rokko Lect. Math. 18, 183–199 (2005)

    Google Scholar 

  13. Ruijsenaars, S.N.M.: First order analytic difference equations and integrable quantum systems. J. Math. Phys. 38, 1069–1146 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sakai, H.: Rational surfaces with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys. 220, 165–221 (2001)

    Article  MATH  Google Scholar 

  15. Spiridonov, V.P.: Classical elliptic hypergeometric functions and their applications. Rokko Lect. Math. 18, 253–287 (2005)

    Google Scholar 

  16. Spiridonov, V.P.: Essays on the theory of elliptic hypergeometric functions. Usp. Mat. Nauk 63, 3–72 (2008)

    Article  MathSciNet  Google Scholar 

  17. Spiridonov, V., Zhedanov, A.: Spectral transformation chains and some new biorthogonal rational functions. Commun. Math. Phys. 210, 49–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tsujimoto, S.: Determinant solutions of the nonautonomous discrete Toda equation associated with the deautonomized discrete KP hierarchy. J. Syst. Sci. Complex. 23, 153–176 (2010)

    Article  MathSciNet  Google Scholar 

  19. Yamada, Y.: Padé method to Painlevé equations. Funkc. Ekvacioj 52, 83–92 (2009)

    Article  MATH  Google Scholar 

  20. Yamada, Y.: A Lax formalism for the elliptic difference Painlevé equation. SIGMA 5, 042 (2009). 15 p.

    Google Scholar 

  21. Yamada, Y.: Lax formalism for q-Painlevé equations with affine Weyl group symmetry of type \(E^{(1)}_{n}\). Int. Math. Res. Not. 2011(17), 3823–3838 (2011)

    MATH  Google Scholar 

  22. Zhedanov, A.S.: Padé interpolation table and biorthogonal rational functions. Rokko Lect. Math. 18, 323–363 (2005)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS Grant-in-aid for Scientific Research (KAKENHI) 21340036, 22540224 and 19104002.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Michio Jimbo on his 60th birthday.

Appendix: Affine Weyl Group Actions

Appendix: Affine Weyl Group Actions

Here we give a derivation of the Painlevé equation (39), (40) from the affine Weyl group actions [9, 21].

Define multiplicative transformations s ij , c, μ ij , ν ij (1≤ij≤8) acting on variables h 1,h 2,u 1,…,u 8 as

(71)

These actions generate the affine Weyl group of type \(E^{(1)}_{8}\) with the following simple reflections:

$$ \begin{array}{cccccccccccccccccc} &&&&s_{12}\\ &&&&\vert\\ c&-&\mu_{12}&-&s_{23}&-&s_{34}&-&\cdots&-&s_{78} . \end{array} $$
(72)

We extend the actions bi-rationally on variables (f,g). The nontrivial actions are as follows:

$$ c(f)=g, \qquad c(g)=f, \qquad \mu_{ij}(f)=\tilde{f},\qquad \nu_{ij}(g)=\tilde{g}, $$
(73)

where, \(\tilde{f}=\tilde{f}_{ij}\) and \(\tilde{g}=\tilde{g}_{ij}\) are rational functions in (f,g) defined by

$$ \frac{\tilde{f}-\mu_{ij}(f_i)}{\tilde{f}-\mu_{ij}(f_j)}=\frac {(f-f_i)(g-g_j)}{(f-f_j)(g-g_i)},\qquad \frac{\tilde{g}-\nu_{ij}(g_i)}{\tilde{g}-\nu_{ij}(g_j)}= \frac {(g-g_i)(f-f_j)}{(g-g_j)(f-f_i)}, $$
(74)

(f i ,g i )=(f (u i ),g (u i )), and

$$ f_\star(z)=\frac{\vartheta_p(\frac {d_2}{z},\frac {h_1}{d_2 z})}{\vartheta_p(\frac {d_1}{z},\frac {h_1}{d_1 z})},\qquad g_\star(z)= \frac{\vartheta_p(\frac {d_2}{z},\frac {h_2}{d_2 z})}{\vartheta_p(\frac {d_1}{z},\frac {h_2}{d_1 z})}, $$
(75)

as in Eq. (10). As a rational function of (f,g), \(\tilde{f}\) is characterized by the following properties: (i) it is of degree (1,1) with indeterminate points (f i ,g i ), (f j ,g j ), (ii) it maps generic points on the elliptic curve (f (z),g (z)) to \(\frac{\vartheta_{p}(\frac {d_{2}}{z},\frac {h_{1}h_{2}}{d_{2} z u_{1} u_{2}})}{\vartheta_{p}(\frac {d_{1}}{z},\frac {h_{1}h_{2}}{d_{1} z u_{i} u_{j}})}\). Using this geometric characterization, we have

$$ \mu_{ij} \biggl\{\frac{{\mathcal{F}}_f(\frac {h_1 z}{h_2})}{{\mathcal{F}}_f(z)} \biggr\}= \frac{\vartheta_p(\frac {u_i}{z},\frac {u_j}{z})}{\vartheta_p(\frac {h_2}{u_i z},\frac {h_2}{u_j z})} \frac{{\mathcal{F}}_f(\frac {h_1 z}{h_2})}{{\mathcal{F}}_f(z)}, \quad \mbox{for } g=g_\star(z), $$
(76)

where the functions \({\mathcal{F}}_{f}(z)\) (and \({\mathcal{G}}_{g}(z)\)) are defined in a similar way as Eq. (11)

(77)

Let us consider the following compositions [9]

$$ r=s_{12}\mu_{12}s_{34}\mu_{34}s_{56} \mu_{56}s_{78}\mu_{78}, \qquad T=rcrc. $$
(78)

Their actions on variables (h i ,u i ) are given by

(79)

where v=qh 2/h 1, \(q=h_{1}^{2}h_{2}^{2}/(u_{1}\cdots u_{8})\). From Eq. (77) and \(r(\frac {h_{1}}{h_{2}})=\frac {q h_{2}}{h_{1}}\), the evolution T(f)=rcrc(f)=r(f) is determined as

$$ \frac{{\mathcal{F}}_f(z)}{{\mathcal{F}}_f(\frac {h_1 z}{h_2})}\frac{T({\mathcal{F}}_f)(\frac {q h_2 z}{h_1})}{T({\mathcal{F}}_f)(z)} =\prod_{i=1}^8 \frac{\vartheta_p(\frac {u_i}{z})}{\vartheta_p(\frac {h_2}{u_i z})}, \quad \mbox{for } g=g_\star(z). $$
(80)

Similarly, since cTc=T −1, T −1(g) is determined by

$$ \frac{{\mathcal{G}}_g(z)}{{\mathcal{G}}_g(\frac {h_2 z}{h_1})}\frac{T^{-1}({\mathcal{G}}_g)(\frac {q h_1 z}{h_2})}{T^{-1}({\mathcal{G}}_g)(z)} =\prod_{i=1}^8 \frac{\vartheta_p(\frac {u_i}{z})}{\vartheta_p(\frac {h_1}{u_i z})}, \quad \mbox{for } f=f_\star(z). $$
(81)

By a re-scaling of variables (h i ,u i ,d i )=(κ i λ 2,ξ i λ,c i λ) with \(\lambda=(h_{1}^{3} h_{2}^{-1})^{\frac{1}{4}}\), we have \({\mathcal{F}}_{f}(z)=F_{f}(\frac {z}{\lambda})\), \(T({\mathcal{F}}_{f})(z)=T(F_{f})(\frac {\kappa_{1}}{\kappa_{2}}\frac {z}{\lambda})\) and so on, since \(T(\lambda)=\frac {h_{2}}{h_{1}}\lambda\). Then the above equations take the form (39), (40), by putting z=λx.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

Noumi, M., Tsujimoto, S., Yamada, Y. (2013). Padé Interpolation for Elliptic Painlevé Equation. In: Iohara, K., Morier-Genoud, S., Rémy, B. (eds) Symmetries, Integrable Systems and Representations. Springer Proceedings in Mathematics & Statistics, vol 40. Springer, London. https://doi.org/10.1007/978-1-4471-4863-0_18

Download citation

Publish with us

Policies and ethics