Skip to main content

Microvascular Angina in Different Clinical Conditions: Diabetes and the Metabolic Syndrome

  • Chapter
  • First Online:
Chest Pain with Normal Coronary Arteries

Abstract

Metabolic syndrome results in a pro-thrombotic, pro-inflammatory condition that markedly favours the development of diabetes and cardiovascular disease. In patients with metabolic syndrome, many interrelated factors are thought to contribute to the development of vascular alterations; however, insulin resistance is regarded as the most relevant. In fact, in addition to its well-known activity on glucose metabolism, insulin exerts a wide spectrum of non-metabolic actions, including vasodilation, inhibition of platelet aggregation and thrombosis, anti-oxidant and anti-inflammatory effects, which result in anti-atherosclerotic and vascular protective effects. In this setting, clustering of multiple cardiovascular risk factors may reinforce their pro-atherogenic potential. Metabolic syndrome is also accompanied by endothelial dysfunction, and it has become appreciated that microvascular damage is a common finding in these subjects. In diabetic patients, impairment of microcirculation is recognized at the level of all circulatory districts, including coronary microvessels, and it has an important prognostic impact. Diabetes is accompanied by profound changes in energy metabolism, increased oxidative stress, derangement of adipokines synthesis, reduced mobilization and function of endothelial progenitor cells, which may lead to microvascular dysfunction. Features of the insulin resistance syndrome, including altered glucose tolerance, are more frequent in patients with microvascular angina. Taken together, these observations suggest that diabetes, along with each of the various components of the metabolic syndrome, has the capability of profoundly altering coronary microvascular reactivity, thus predisposing to myocardial ischemia even in the absence of coronary artery stenosis. When these alterations combine in the same patient to give rise to full-blown metabolic syndrome, their negative effects on myocardial perfusion are synergistically potentiated. While the pathophysiology of this condition has become to be substantially unravelled, much research is still needed to achieve a tailored therapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dean JD, Jones CJH. Hyperinsulinaemia and microvascular angina (“syndrome X”). Lancet. 1991;337:456–7.

    Article  PubMed  CAS  Google Scholar 

  2. Chauhan A, Foote J, Petch MC, Schofield PM. Hyperinsulinemia, coronary artery disease and syndrome X. J Am Coll Cardiol. 1994;23:364–8.

    Article  PubMed  CAS  Google Scholar 

  3. Botker HE, Moller N, Ovesen P, et al. Insulin resistance in microvascular angina (syndrome X). Lancet. 1993;342:136–40.

    Article  PubMed  CAS  Google Scholar 

  4. Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci. 2010;1212:E1–19.

    Article  PubMed  Google Scholar 

  5. Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol. 2006;47:1093–100.

    Article  PubMed  CAS  Google Scholar 

  6. Dandona P, Aljada A, Chaudhuri A, et al. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111:1448–54.

    Article  PubMed  Google Scholar 

  7. Grundy SM, Cleeman JI, Daniels SR, et al. American heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/national Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–52.

    Article  PubMed  Google Scholar 

  8. Lakka HM, Laaksonnen DE, Lakka TA, et al. The metabolic ­syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288:2709–16.

    Article  PubMed  Google Scholar 

  9. Schillaci G, Pirro M, Vaudo G, et al. Prognostic value of the metabolic syndrome in essential hypertension. J Am Coll Cardiol. 2004;43:1817–22.

    Article  PubMed  Google Scholar 

  10. Sitia S, Tomasoni L, Atzeni F, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 2010;9:830–4.

    Article  PubMed  CAS  Google Scholar 

  11. Nakashima H, Suzuki H, Ohtsu H, et al. Angiotensin II regulates vascular and endothelial dysfunction: recent topics of angiotensin II type-1 receptor signalling in the vasculature. Cur Vasc Pharmacol. 2006;4:67–78.

    Article  CAS  Google Scholar 

  12. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111:363–8.

    Article  PubMed  Google Scholar 

  13. Stojanovich L. Autonomic dysfunction in autoimmune rheumatic disease. Autoimmun Rev. 2009;8:569–72.

    Article  PubMed  CAS  Google Scholar 

  14. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  15. Berliner JA, Navad M, Fogelman AM, et al. Atherosclerosis: basic mechanisms: oxidation, inflammation, and genetics. Circulation. 1995;91:2488–96.

    Article  PubMed  CAS  Google Scholar 

  16. Norata GD, Tonti L, Roma P, Catapano AL. Apoptosis and proliferation of endothelial cells in early atherosclerotic lesions: possible role of oxidized LDL. Nutr Metab Cardiovasc Dis. 2002;12:297–305.

    PubMed  CAS  Google Scholar 

  17. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA. Microcirculation in hypertension: a new target for treatment? Circulation. 2001;104:736–41.

    Article  Google Scholar 

  18. Sernè EH, de Jongh RT, Eringa EC, et al. Microvascular dysfunction. A potential pathophysiological role in the metabolic syndrome. Hypertension. 2007;50:204–11.

    Article  PubMed  CAS  Google Scholar 

  19. Serné EH, Stehouwer CD, ter Maaten JC, et al. Microvascular function relates to insulin sensitivity and blood pressure in normal subjects. Circulation. 1999;99:896–902.

    Article  PubMed  Google Scholar 

  20. de Jongh RT, Ijzerman RG, Serne EH, et al. Visceral and truncal subcutaneous adipose tissue are associated with impaired capillary recruitment in healthy individuals. J Clin Endocrinol Metab. 2006;91:5100–6.

    Article  PubMed  CAS  Google Scholar 

  21. Perticone F, Ceravolo R, Candigliota M, et al. Obesity and body fat distribution induce endothelial dysfunction by oxidative stress: protective effect of vitamin C. Diabetes. 2001;50:159–65.

    Article  PubMed  CAS  Google Scholar 

  22. Steinberg HO, Chaker H, Leaming R, et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97:2601–10.

    Article  PubMed  CAS  Google Scholar 

  23. Al Suwaidi J, Higano ST, Holmes Jr DR, et al. Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. J Am Coll Cardiol. 2001;37:1523–8.

    Article  PubMed  Google Scholar 

  24. Schindler TH, Cardenas J, Prior JO, et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol. 2006;47:1188–95.

    Article  PubMed  CAS  Google Scholar 

  25. Lteif AA, Han K, Mather KJ. Obesity, insulin resistance, and the metabolic syndrome: determinants of endothelial dysfunction in whites and blacks. Circulation. 2005;112:32–8.

    Article  PubMed  CAS  Google Scholar 

  26. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–904.

    Article  PubMed  Google Scholar 

  27. Jones BH, Standridge MK, Taylor JW, Moustaid N. Angiotensinogen gene expression in adipose tissue: analysis of obese models and hormonal and nutritional control. Am J Physiol. 1997;273:R236–42.

    PubMed  CAS  Google Scholar 

  28. Engeli S, Sharma AM. Role of adipose tissue for cardiovascular-renal regulation in health and disease. Horm Metab Res. 2000;32:485–99.

    Article  PubMed  CAS  Google Scholar 

  29. Hsieh PS. Reversal of fructose-induced hypertension and insulin resistance by chronic losartan treatment is independent of AT2 receptor activation in rats. J Hypertens. 2005;23:2209–17.

    Article  PubMed  CAS  Google Scholar 

  30. Fleming I. Signaling by the angiotensin-converting enzyme. Circ Res. 2006;98:887–96.

    Article  PubMed  CAS  Google Scholar 

  31. Engeli S, Negrel R, Sharma AM. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension. 2000;35:1270–7.

    Article  PubMed  CAS  Google Scholar 

  32. Ran J, Hirano T, Fukui T, Saito K, et al. Angiotensin II infusion decreases plasma adiponectin level via its type 1 receptor in rats: an implication for hypertension-related insulin. Metabolism. 2006;55:478–88.

    Article  PubMed  CAS  Google Scholar 

  33. Hattori Y, Akimoto K, Gross SS, et al. Angiotensin-II-induced oxidative stress elicits hypoadiponectinaemia in rats. Diabetologia. 2005;48:1066–74.

    Article  PubMed  CAS  Google Scholar 

  34. de Jongh RT, Sernè EH, Ijzerman RG, et al. Impaired microvascular function in obesity: implications for obesity- associated microangiopathy, hypertension, and insulin resistance. Circulation. 2004;109:2529–35.

    Article  PubMed  Google Scholar 

  35. Avogaro A, de Kreutzenberg SV. Mechanisms of endothelial dysfunction in obesity. Clin Chim Acta. 2005;360:9–26.

    Article  PubMed  CAS  Google Scholar 

  36. Matias I, Gonthier MP, Orlando P, et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab. 2006;91:3171–80.

    Article  PubMed  CAS  Google Scholar 

  37. Steffens S, Mach F. Cannabinoid receptors in atherosclerosis. Curr Opin Lipidol. 2006;17:519–26.

    Article  PubMed  CAS  Google Scholar 

  38. Steffens S, Veillard NR, Arnaud C, et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature. 2005;434:782–6.

    Article  PubMed  CAS  Google Scholar 

  39. Quercioli A, Pataky Z, Vincenti G, et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur Heart J. 2011;32:1369–78.

    Article  PubMed  CAS  Google Scholar 

  40. Ritchie SA, Ewart MA, Perry CG, et al. The role of insulin and the adipocytokines in regulation of vascular endothelial function. Clin Sci (Lond). 2004;107:519–32.

    Article  CAS  Google Scholar 

  41. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830–40.

    Article  PubMed  CAS  Google Scholar 

  42. Pries AR, Habazettl H, Ambrosio G, et al. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc Res. 2008;80:165–74.

    Article  PubMed  CAS  Google Scholar 

  43. Freeman BA, White CR, Guiterrez H, et al. Oxygen radical-nitric oxide reaction in vascular diseases. Adv Pharmacol. 1995;34:45–69.

    Article  PubMed  CAS  Google Scholar 

  44. Patrono C, FitzGerald GA. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Circulation. 1997;96:3314–20.

    Article  Google Scholar 

  45. Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene. 1999;18:7719–30.

    Article  PubMed  CAS  Google Scholar 

  46. Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87:1123–32.

    Article  PubMed  CAS  Google Scholar 

  47. Tritto I, Ambrosio G. The multi-faceted behavior of nitric oxide in vascular “inflammation”: catchy terminology or true phenomenon? Cardiovasc Res. 2004;63:1–4.

    Article  PubMed  CAS  Google Scholar 

  48. Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy. The search for a unifying hypothesis. Circ Res. 2006;98:596–605.

    Article  PubMed  CAS  Google Scholar 

  49. Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Rad Biol Med. 2006;40:183–92.

    Article  PubMed  CAS  Google Scholar 

  50. Jonk AM, Houben AJ, de Jongh RT, et al. Microvascular dysfunction in obesity: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology (Bethesda). 2007;22:252–60.

    Article  CAS  Google Scholar 

  51. Xu ZG, Lanting L, Vaziri ND, et al. Upregulation of angiotensin II type 1 receptor, inflammatory mediators, and enzymes or arachidonate metabolism in obese Zucker rat kidney: reversal by angiotensin II type 1 receptor blockade. Circulation. 2005;111:1962–9.

    Article  PubMed  CAS  Google Scholar 

  52. Vaziri ND, Xu ZG, Shahkarami A, et al. Role of AT-1 receptor in regulation of vascular MCP-1, IL-6, PAI-1, MAP kinase, and matrix expressions in obesity. Kidney Int. 2005;68:2787–93.

    Article  PubMed  CAS  Google Scholar 

  53. Wassmann S, Stumpf M, Strehlow K, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res. 2004;94:534–41.

    Article  PubMed  CAS  Google Scholar 

  54. Sola S, Mir MQS, Cheema FA, et al. Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome. Results of the irbesartan and lipoic acid in endothelial dysfunction (ISLAND) study. Circulation. 2005;111:343–8.

    Article  PubMed  CAS  Google Scholar 

  55. Watanabe S, Tagawa T, Yamakawa K, et al. Inhibition of the renin-angiotensin system prevents free fatty acid induced acute endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol. 2005;25:2376–80.

    Article  PubMed  CAS  Google Scholar 

  56. Furuhashi M, Ura N, Higashiura K, et al. Blockade of the renin-angiotensin system increases adiponectin concentrations in patients with essential hypertension. Hypertension. 2003;42:76–81.

    Article  PubMed  CAS  Google Scholar 

  57. Prior JO, Quinones MJ, Hernandez-Pampaloni M, et al. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance and type 2 diabetes mellitus. Circulation. 2005;111:2291–8.

    Article  PubMed  CAS  Google Scholar 

  58. Rizzoni D, Porteri E, Guelfi D, et al. Structural alterations in subcutaneous small arteries of normotensive and hypertensive patients with non-insulin-dependent diabetes mellitus. Circulation. 2001;103:1238–44.

    Article  PubMed  CAS  Google Scholar 

  59. Rizzoni D, Agabiti Rosei E. Small artery remodeling in hypertension and diabetes. Curr Hyperten Rep. 2006;8:90–5.

    Article  Google Scholar 

  60. Galderisi M, de Simone G, Cicala S, et al. Coronary flow reserve in hypertensive patients with hypercholesterolemia and without coronary heart disease. Am J Hypertens. 2007;20:177–83.

    Article  PubMed  Google Scholar 

  61. Swan JW, Walton C, Godsland IF, et al. Insulin resistance syndrome as a feature of cardiological syndrome X in non-obese men. Br Heart J. 1994;71:41–4.

    Article  PubMed  CAS  Google Scholar 

  62. Jadhav ST, Ferrell WR, Petrie JR, et al. Microvascular function, metabolic syndrome and novel risk factor status in women with cardiac syndrome X. Am J Cardiol. 2006;97:1727–31.

    Article  PubMed  CAS  Google Scholar 

  63. Banks K, Puttagunta D, Murphy S, et al. Clinical characteristics, vascular function, and inflammation in women with angina in the absence of coronary atherosclerosis: the Dallas Heart Study. JACC Cardiovasc Imaging. 2011;4:65–73.

    Article  PubMed  Google Scholar 

  64. Gaspardone A, Ferri C, Crea F, et al. Enhanced activity of sodium–lithium countertransport in patients with cardiac syndrome X. A potential link between cardiac and metabolic syndrome X. J Am Coll Cardiol. 1998;32:2031–4.

    Article  PubMed  CAS  Google Scholar 

  65. Ganz P, Vita JA. Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation. 2003;108:2049–53.

    Article  PubMed  Google Scholar 

  66. Schindler TH, Nitzsche EU, Olschewski M, et al. Chronic inflammation and impaired coronary vasoreactivity in patients with coronary risk factors. Circulation. 2004;110:1069–75.

    Article  PubMed  Google Scholar 

  67. Cortigiani L, Rigo F, Gherardi S, et al. Additional prognostic value of coronary flow reserve in diabetic and nondiabetic patients with negative dipyridamole stress echocardiography by wall motion criteria. J Am Coll Cardiol. 2007;50:1354–61.

    Article  PubMed  Google Scholar 

  68. Srinivasan M, Herrero P, McGill JB, et al. The effects of plasma insulin and glucose on myocardial blood flow in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2005;46:42–8.

    Article  PubMed  CAS  Google Scholar 

  69. Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003;41:1387–93.

    Article  PubMed  CAS  Google Scholar 

  70. Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1997;30:1472–7.

    Article  PubMed  CAS  Google Scholar 

  71. Yokoyama I, Ohtake T, Momomura S, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes. 1998;47:119–24.

    Article  PubMed  CAS  Google Scholar 

  72. Yokoyama I, Yonekura K, Ohtake T, et al. Coronary microangiopathy in type 2 diabetic patients: Relation to glycemic control, sex, and microvascular angina rather than to coronary artery disease. J Nucl Med. 2000;41:978–85.

    PubMed  CAS  Google Scholar 

  73. Quiñones MJ, Hernandez-Pampaloni M, Schelbert H, et al. Coronary vasomotor abnormalities in insulin-resistant individuals. Ann Intern Med. 2004;140:700–8.

    PubMed  Google Scholar 

  74. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci. 2005;109:143–59.

    Article  PubMed  CAS  Google Scholar 

  75. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res. 2003;11:1278–89.

    Article  PubMed  CAS  Google Scholar 

  76. Pop-Busui R, Kirkwood I, Schmid H, et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2005;44:2368–74.

    Article  CAS  Google Scholar 

  77. Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy. Evaluation by Doppler echocardiography. J Am Coll Cardiol. 2006;48:1548–51.

    Article  PubMed  Google Scholar 

  78. Masuyama T, Uematsu M, Doy I, et al. Abnormal coronary flow dynamics at rest and during tachycardia associated with impaired left ventricular relaxation in humans: implication for tachycardia-induced myocardial ischemia. J Am Coll Cardiol. 1994;24:1625–32.

    Article  PubMed  CAS  Google Scholar 

  79. Wisniacki N, Taylor W, Lye M, Wilding JP. Insulin resistance and inflammatory activation in older patients with systolic and diastolic heart failure. Heart. 2005;91:32–7.

    Article  PubMed  CAS  Google Scholar 

  80. Liu JE, Palmieri V, Roman JE, et al. The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. Am J Cardiol. 2001;87:1260–5.

    Article  PubMed  Google Scholar 

  81. Schafer S, Kelm M, Mingers S, Strauer BE. Left ventricular remodelling impairs coronary flow reserve in hypertensive patients. J Hypertens. 2002;20:1431–7.

    Article  PubMed  CAS  Google Scholar 

  82. Fiordaliso F, Leri A, Cesselli D, et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes. 2001;50:2363–675.

    Article  PubMed  CAS  Google Scholar 

  83. Paulus WJ, Shah AM. NO and cardiac diastolic function. Cardiovasc Res. 1999;43:595–606.

    Article  PubMed  CAS  Google Scholar 

  84. Strauer BE, Motz W, Vogt M, Schwartzkopff B. Impaired coronary flow reserve in NIDDM: a possible role for diabetic cardiomyopathy in humans. Diabetes. 1997;46 suppl 2:S119–24.

    PubMed  CAS  Google Scholar 

  85. Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus role of NAD(P)H Oxidase and endothelial nitric oxide synthase. Circulation. 2002;105:1656–62.

    Article  PubMed  CAS  Google Scholar 

  86. Thum T, Fraccarollo D, Schultheiss M, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. 2007;56:666–74.

    Article  PubMed  CAS  Google Scholar 

  87. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353:999–1007.

    Article  PubMed  CAS  Google Scholar 

  88. Fadini GP, de Kreutzenberg SV, Coracina A, et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur Heart J. 2006;27:2247–55.

    Article  PubMed  CAS  Google Scholar 

  89. Bahlmann FH, de Groot K, Mueller O, et al. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension. 2005;45:526–9.

    Article  PubMed  CAS  Google Scholar 

  90. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708–14.

    Article  PubMed  CAS  Google Scholar 

  91. Dutka DP, Pitt M, Pagano D, et al. Myocardial glucose transport and utilization in patients with type 2 diabetes mellitus, left ­ventricular dysfunction, and coronary artery disease. J Am Coll Cardiol. 2006;48:2225–31.

    Article  PubMed  CAS  Google Scholar 

  92. Szerafin T, Erdei N, Fulop T, et al. Increased cyclooxygenase-2 expression and prostaglandin-mediated dilation in coronary arterioles of patients with diabetes mellitus. Circ Res. 2006;99:e12–17.

    Article  PubMed  CAS  Google Scholar 

  93. Schindler TH, Quinones MQ, Pimienta O, et al. Angiotensin receptor blockade in patients with impaired glucose tolerance improves coronary vasomotor function as monitored with PET. Eur Heart. 2007;28(Abstract Supplement):373.

    Google Scholar 

  94. Schindler TH, Facta AD, Prior JO, et al. Improvement in coronary vascular dysfunction produced with euglycaemic control in patients with type 2 diabetes. Heart. 2007;93:345–9.

    Article  PubMed  CAS  Google Scholar 

  95. Patel A, ADVANCE Collaborative Group, Macmahon S, Chalmers J, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomized controlled trial. Lancet. 2007;370:829–40.

    Article  PubMed  CAS  Google Scholar 

  96. Neglia D, Fommei E, Varela-Carver A, et al. Perindopril and indapamide reverse coronary microvascular remodelling and improve flow in arterial hypertension. J Hypertens. 2011;29:364–72.

    Article  PubMed  CAS  Google Scholar 

  97. ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Article  PubMed  CAS  Google Scholar 

  98. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  PubMed  CAS  Google Scholar 

  99. Stettler C, Allemann S, Juni P, et al. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am Heart J. 2006;152:27–38.

    Article  PubMed  CAS  Google Scholar 

  100. Fuchsjager-Mayrl G, Pleiner J, Wiesinger GF, et al. Exercise training improves endothelial function in patients with type 1 diabetic patients. Diabetes Care. 2002;25:1795–801.

    Article  PubMed  Google Scholar 

  101. Heart Protection Study Collaborative. MRC/BHF heart protection study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360:23–33.

    Article  Google Scholar 

  102. Lonn E, Yusuf S, Hoogwerf B, et al. Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care. 2002;25:1919–27.

    Article  PubMed  CAS  Google Scholar 

  103. Miller III ER, Pastor-Barriuso R, Dalal D, et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142:37–46.

    PubMed  CAS  Google Scholar 

  104. Zuchi C, Ambrosio G, Lüscher TF, Landmesser U. Nutraceuticals in cardiovascular prevention: lessons from studies on endothelial function. Cardiovasc Ther. 2010;28:187–201.

    Article  PubMed  CAS  Google Scholar 

  105. Ceriello A, Assaloni R, Da Ros R, et al. Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in type 2 diabetic patients. Circulation. 2005;111:2518–24.

    Article  PubMed  CAS  Google Scholar 

  106. Yoshio H, Shimizu M, Kita Y, et al. Effects of short-term aminophylline administration on cardiac functional reserve in patients with syndrome X. J Am Coll Cardiol. 1995;25:1547–51.

    Article  PubMed  CAS  Google Scholar 

  107. Elliott PM, Krzyzowska-Dickinson K, Calvino R, et al. Effect of oral aminophylline in patients with angina and normal coronary arteriograms (cardiac syndrome X). Heart. 1997;77:523–6.

    PubMed  CAS  Google Scholar 

  108. Pizzi C, Manfrini O, Fontana F, Bugiardini R. Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme a reductase in cardiac syndrome X: role of superoxide dismutase activity. Circulation. 2004;109:53–8.

    Article  PubMed  CAS  Google Scholar 

  109. Kaski JC, Rosano G, Gavrielides S, Chen L. Effects of angiotensin-converting enzyme inhibition on exercise-induced angina and ST segment depression in patients with microvascular angina. J Am Coll Cardiol. 1994;23:652–7.

    Article  PubMed  CAS  Google Scholar 

  110. Chen JW, Hsu NW, Wu TC, et al. Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol. 2002;90:974–82.

    Article  PubMed  CAS  Google Scholar 

  111. Nalbantgil I, Onder R, Altintig A, et al. Therapeutic benefits of cilazapril in patients with syndrome X. Cardiology. 1998;89:130–3.

    Article  PubMed  CAS  Google Scholar 

  112. Fabian E, Varga A, Picano E, et al. Effect of simvastatin on endothelial function in cardiac syndrome X patients. Am J Cardiol. 2004;94:652–5.

    Article  PubMed  CAS  Google Scholar 

  113. Kayikcioglu M, Payzin S, Yavuzgil O, et al. Benefits of statin treatment in cardiac syndrome-X1. Eur Heart J. 2003;24:1999–2005.

    Article  PubMed  CAS  Google Scholar 

  114. Russell SJ, Di Stefano EM, Naffati MT, et al. The effects of the angiotensin II receptor (type I) antagonist irbesartan in patients with cardiac syndrome X. Heart. 2007;93:253–4.

    Article  PubMed  CAS  Google Scholar 

  115. Rosano GM, Peters NS, Lefroy D, et al. 17-beta-Estradiol therapy lessens angina in postmenopausal women with syndrome X. J Am Coll Cardiol. 1996;28:1500–5.

    Article  PubMed  CAS  Google Scholar 

  116. Lerman A, Burnett Jr JC, Higano ST, et al. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation. 1998;97:2123–8.

    Article  PubMed  CAS  Google Scholar 

  117. Botker HE, Sonne HS, Schmitz O, Nielsen TT. Effects of doxazosin on exercise-induced angina pectoris, ST-segment depression, and insulin sensitivity in patients with syndrome X. Am J Cardiol. 1998;82:1352–6.

    Article  PubMed  CAS  Google Scholar 

  118. Jadhav S, Ferrell W, Greer IA, et al. Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2006;48:956–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Ambrosio MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tritto, I., Zuchi, C., Ambrosio, G. (2013). Microvascular Angina in Different Clinical Conditions: Diabetes and the Metabolic Syndrome. In: Kaski, J., Eslick, G., Bairey Merz, C. (eds) Chest Pain with Normal Coronary Arteries. Springer, London. https://doi.org/10.1007/978-1-4471-4838-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4838-8_13

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4837-1

  • Online ISBN: 978-1-4471-4838-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics