Skip to main content

Designs, Groups and Computing

  • Chapter
  • First Online:
Probabilistic Group Theory, Combinatorics, and Computing

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2070))

Abstract

In this chapter we present some applications of groups and computing to the discovery, construction, classification and analysis of combinatorial designs. The focus is on certain block designs and their statistical efficiency measures, and in particular semiLatin squares, which are certain designs with additional block structure and which generalise Latin squares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Bailey, Semi-Latin squares. J. Stat. Plan. Inference 18, 299–312 (1988)

    MATH  Google Scholar 

  2. R.A. Bailey, Efficient semi-Latin squares. Stat. Sinica 2, 413–437 (1992)

    MATH  Google Scholar 

  3. R.A. Bailey, Association Schemes. Designed Experiments, Algebra and Combinatorics (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  4. R.A. Bailey, Design of Comparative Experiments (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  5. R.A. Bailey, Symmetric factorial designs in blocks. J. Stat. Theor. Pract. 5, 13–24 (2011)

    Article  MATH  Google Scholar 

  6. R.A. Bailey, P.J. Cameron, Combinatorics of optimal designs, in Surveys in Combinatorics 2009, ed. by S. Huczynska et al. (Cambridge University Press, Cambridge, 2009), pp. 19–73

    Google Scholar 

  7. R.A. Bailey, P.E. Chigbu, Enumeration of semi-Latin squares. Discrete Math. 167–168, 73–84 (1997)

    Article  MathSciNet  Google Scholar 

  8. R.A. Bailey, G. Royle, Optimal semi-Latin squares with side six and block size two. Proc. Roy. Soc. Lond. Ser. A 453, 1903–1914 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. P.J. Cameron, Permutation Groups (Cambridge University Press, Cambridge, 1999)

    Book  MATH  Google Scholar 

  11. P.J. Cameron, P. Dobcsányi, J.P. Morgan, L.H. Soicher, The External Representation of Block Designs, http://designtheory.org/library/extrep/extrep-1.1-html/

  12. P.J. Cameron, L.H. Soicher, Block intersection polynomials. Bull. Lond. Math. Soc. 39, 559–564 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. C.-S. Cheng, R.A. Bailey, Optimality of some two-associate-class partially balanced incomplete-block designs. Ann. Stat. 19, 1667–1671 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. P.E. Chigbu, Semi-Latin Squares: Methods for Enumeration and Comparison, Ph.D. Thesis, University of London, 1996

    Google Scholar 

  15. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, ATLAS of Finite Groups (Clarendon Press, Oxford, 1985)

    MATH  Google Scholar 

  16. P. Dobcsányi, D.A. Preece, L.H. Soicher, On balanced incomplete-block designs with repeated blocks. Eur. J. Comb. 28, 1955–1970 (2007)

    Article  MATH  Google Scholar 

  17. R.N. Edmondson, Trojan square and incomplete Trojan square designs for crop research. J. Agric. Sci. 131, 135–142 (1998)

    Article  Google Scholar 

  18. The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.5.2(beta), 2011, http://www.gap-system.org/

  19. A. Giovagnoli, H.P. Wynn, Optimum continuous block designs. Proc. Roy. Soc. Lond. Ser. A 377, 405–416 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. G. James, M. Liebeck, Representations and Characters of Groups, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  21. P. Kaski, P.R.J. Östergård, Classification Algorithms for Codes and Designs (Springer, Berlin, 2006)

    MATH  Google Scholar 

  22. C.W.H. Lam, L. Thiel, S. Swiercz, The non-existence of finite projective planes of order 10. Can. J. Math. 41, 1117–1123 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.H. van Lint, R.M. Wilson, A Course in Combinatorics (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  24. J.P. McSorley, L.H. Soicher, Constructing t-designs from t-wise balanced designs. Eur. J. Comb. 28, 567–571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. N.C.K. Phillips, W.D. Wallis, All solutions to a tournament problem. Congr. Numerantium 114, 193–196 (1996)

    MathSciNet  MATH  Google Scholar 

  26. D.A. Preece, G.H. Freeman, Semi-Latin squares and related designs. J. Roy. Stat. Soc. Ser. B 45, 267–277 (1983)

    MATH  Google Scholar 

  27. D.A. Preece, N.C.K. Phillips, Euler at the bowling green. Utilitas Math. 61, 129–165 (2002)

    MathSciNet  MATH  Google Scholar 

  28. D.J. Roy, Confirmation of the Non-existence of a Projective Plane of Order 10, M.Sc. Thesis, Carleton University, Ottawa, 2011

    Google Scholar 

  29. K.R. Shah, B.K. Sinha, Theory of Optimal Designs. Lecture Notes in Statistics, vol. 54 (Springer, Berlin, 1989)

    Google Scholar 

  30. L.H. Soicher, On the structure and classification of SOMAs: generalizations of mutually orthogonal Latin squares. Electron. J. Comb. 6, R32 (1999), Printed version: J. Comb. 6, 427–441 (1999)

    Google Scholar 

  31. L.H. Soicher, SOMA Update, http://www.maths.qmul.ac.uk/~leonard/soma/

  32. L.H. Soicher, Computational group theory problems arising from computational design theory. Oberwolfach Rep. 3 (2006), Report 30/2006: Computational group theory, 1809–1811

    Google Scholar 

  33. L.H. Soicher, More on block intersection polynomials and new applications to graphs and block designs. J. Comb. Theor. Ser. A 117, 799–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. L.H. Soicher, The DESIGN package for GAP (2011), Version 1.6, http://designtheory.org/software/gap_design/

  35. L.H. Soicher, The GRAPE package for GAP, Version 4.5, 2011, http://www.maths.qmul.ac.uk/~leonard/grape/

  36. L.H. Soicher, Uniform semi-Latin squares and their Schur-optimality. J. Comb. Des. 20, 265–277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. L.H. Soicher, Optimal and efficient semi-Latin squares. J. Stat. Plan. Inference 143, 573–582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. C.-Y. Suen, I.M. Chakravarti, Efficient two-factor balanced designs. J. Roy. Stat. Soc. Ser. B 48, 107–114 (1986)

    MathSciNet  MATH  Google Scholar 

  39. M.N. Vartak, The non-existence of certain PBIB designs. Ann. Math. Stat. 30, 1051–1062 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Martin Liebeck for his result of Sect. 3.5.1 and for allowing its inclusion in this chapter. I also thank Eamonn O’Brien for his calculations in Magma. The hospitality of the de Brún Centre for Computational Algebra, NUI Galway, during the Fifth de Brún Workshop is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard H. Soicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Soicher, L.H. (2013). Designs, Groups and Computing. In: Detinko, A., Flannery, D., O'Brien, E. (eds) Probabilistic Group Theory, Combinatorics, and Computing. Lecture Notes in Mathematics, vol 2070. Springer, London. https://doi.org/10.1007/978-1-4471-4814-2_3

Download citation

Publish with us

Policies and ethics