Skip to main content

Optimal Tracking Control for Discrete-Time Systems

  • Chapter
Adaptive Dynamic Programming for Control

Part of the book series: Communications and Control Engineering ((CCE))

  • 3515 Accesses

Abstract

The aim of this chapter is to present some direct methods for solving the closed-loop optimal tracking control problem for discrete-time systems. Considering the fact that the performance index functions of optimal tracking control problems are quite different from those of optimal state feedback control problems, a new type of performance index function is defined. The methods are mainly based on the iterative HDP and GDHP algorithms. We first study the optimal tracking control problem of affine nonlinear systems, and after that we study the optimal tracking control problem of nonaffine nonlinear systems. It is noticed that most real-world systems need to be effectively controlled within a finite time horizon. Hence, based on the above results, we will further study the finite-horizon optimal tracking control problem, using the ADP approach in the last part of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aganovic Z, Gajic Z (1994) The successive approximation procedure for finite-time optimal control of bilinear systems. IEEE Trans Autom Control 39:1932–1935

    Article  MathSciNet  MATH  Google Scholar 

  2. Cimen T, Banks SP (2004) Nonlinear optimal tracking control with application to super-tankers for autopilot design. Automatica 40:1845–1863

    Article  MathSciNet  MATH  Google Scholar 

  3. Cui LL, Zhang HG, Chen B, Zhang QL (2010) Asymptotic tracking control scheme for mechanical systems with external disturbances and friction. Neurocomputing 73:1293–1302

    Article  Google Scholar 

  4. Devasiad S, Chen D, Paden B (1996) Nonlinear inversion-based output tracking. IEEE Trans Autom Control 41:930–942

    Article  Google Scholar 

  5. Dierks T, Jagannathan S (2009) Optimal tracking control of affine nonlinear discrete-time systems with unknown internal dynamics. In: Proceedings of joint 48th IEEE conference on decision and control and 28th Chinese control conference, Shanghai, China, pp 6750–6755

    Google Scholar 

  6. Enns R, Si J (2003) Helicopter trimming and tracking control using direct neural dynamic programming. IEEE Trans Neural Netw 14:929–939

    Article  Google Scholar 

  7. Gao D, Tang G, Zhang B (2006) Approximate optimal tracking control for a class of nonlinear systems with disturbances. In: Proceedings of 6th world congress on intelligent control and automation, Dalian, China, pp 521–525

    Google Scholar 

  8. Ha IJ, Gilbert EG (1987) Robust tracking in nonlinear systems. IEEE Trans Autom Control 32:763–771

    Article  MathSciNet  MATH  Google Scholar 

  9. Hsu CT, Chen SL (2003) Nonlinear control of a 3-pole active magnetic bearing system. Automatica 39:291–298

    Article  MathSciNet  MATH  Google Scholar 

  10. Lewis FL, Syrmos VL (1995) Optimal control. Wiley, New York

    Google Scholar 

  11. Mclain TW, Bailry CA, Beard RW (1999) Synthesis and experimental testing of a nonlinear optimal tracking controller. In: Proceedings of the American control conference, San Diego, CA, USA, pp 2847–2851

    Google Scholar 

  12. Park YM, Choi MS, Lee KY (1996) An optimal tracking neuro-controller for nonlinear dynamic systems. IEEE Trans Neural Netw 7:1009–1110

    Article  Google Scholar 

  13. Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22:400–407

    Article  MathSciNet  MATH  Google Scholar 

  14. Si J, Wang YT (2001) On-line learning control by association and reinforcement. IEEE Trans Neural Netw 12:264–276

    Article  Google Scholar 

  15. Stefano ML (1981) Optimal design of PID regulators. Int J Control 33:601–616

    Article  MATH  Google Scholar 

  16. Yang Q, Jagannathan S (2007) Online reinforcement learning neural network controller design for nanomanipulation. In: Proceedings of the IEEE symposium on approximate dynamic programming and reinforcement learning, Honolulu, HI, pp 225–232

    Chapter  Google Scholar 

  17. Wang FY, Jin N, Liu D, Wei Q (2011) Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound. IEEE Trans Neural Netw 22:24–36

    Article  Google Scholar 

  18. Wang D, Liu D, Wei Q (2012) Finite-horizon neuro-optimal tracking control for a class of discrete-time nonlinear systems using adaptive dynamic programming approach. Neurocomputing 78:14–22

    Article  Google Scholar 

  19. Zhang HG, Yang J, Su CY (2007) T-S fuzzy-model-based robust H-infinity design for networked control systems with uncertainties. IEEE Trans Ind Inform 3:289–301

    Article  Google Scholar 

  20. Zhang HG, Wei QL, Luo YH (2008) A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE Trans Syst Man Cybern, Part B, Cybern 38:937–942

    Article  Google Scholar 

  21. Zhang HG, Wang ZS, Liu DR (2009) Global asymptotic stability and robust stability of a class of Cohen–Grossberg neural networks with mixed delays. IEEE Trans Circuits Syst I, Regul Pap 56:616–629

    Article  MathSciNet  Google Scholar 

  22. Zheng CD, Zhang HG (2007) Generalized multivariate rectangular matrix Pade-type approximants. IEEE Trans Circuits Syst I, Regul Pap 54:2099–2105

    Article  MathSciNet  Google Scholar 

  23. Zheng CD, Zhang HG, Tian H (2007) Generalized homogeneous multivariate matrix Pade-type approximants and Pade approximants. IEEE Trans Autom Control 52:2160–2165

    Article  MathSciNet  Google Scholar 

  24. Zheng CD, Zhang HG, Wang ZS (2009) Delay-dependent globally exponential stability criteria for static neural networks: an LMI approach. IEEE Trans Neural Netw 56:605–609

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Zhang, H., Liu, D., Luo, Y., Wang, D. (2013). Optimal Tracking Control for Discrete-Time Systems. In: Adaptive Dynamic Programming for Control. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4757-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4757-2_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4756-5

  • Online ISBN: 978-1-4471-4757-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics