Skip to main content

Fluid, Electrolyte and Nutritional Support of the Surgical Neonate

  • Chapter
  • First Online:
Rickham's Neonatal Surgery

Abstract

The newborn infant is in a “critical epoch” of development. A healthy term infant grows at a rate of 25–30 g per day over the first 6 months of life, so that weight has doubled by the age of 5 months. This growth clearly requires adequate nutrition, but especially where medical or surgical conditions exist, must also be carefully managed together with fluid and electrolytes. Thus a significant period of inadequate nutrition, or inappropriate fluid and electrolyte administration, may not only affect short-term outcomes, but may also be a risk factor for the long-term menace of stunted mental and physical development. Amongst preterm infants, lower in-hospital growth velocity is associated with impaired neurodevelopmental outcome. Fluids and electrolytes undergo changes during the perinatal period, so an understanding of the perinatal changes in body composition is useful to understand the principles behind the fluid, electrolyte and nutritional management of surgical neonates. As well as providing the components necessary for increase in tissue mass, adequate provision of nutrients is also required to mount an appropriate immune response is extremely important, as infection and sepsis may impair growth and neurodevelopmental outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117(4):1253–61.

    Article  PubMed  Google Scholar 

  2. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–65.

    Article  CAS  PubMed  Google Scholar 

  3. Friis-Hansen B. Water distribution in the foetus and newborn infant. Acta Paediatr Scand Suppl. 1983;305:7–11.

    Article  Google Scholar 

  4. Denne SC, Poindexter BB, Leitch CA, Ernst JA, Lemons PK, Lemons JA. Nutrition and metabolism in the high-risk neonate. In: MARTIN RJ, Fanarof AA, Walsh MC, editors. Fanaroff and Martin’s neonatal-perinatal medicine. 8th ed. Philadelphia, PA: Mosby-Elsevier; 2006. p. 661–93.

    Google Scholar 

  5. Hartnoll G, Betremieux P, Modi N. Body water content of extremely preterm infants at birth. Arch Dis Child Fetal Neonatal Ed. 2000;83(1):F56–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilson DC, Cairns P, Halliday HL, Reid M, McClure G, Dodge JA. Randomised controlled trial of an aggressive nutritional regimen in sick very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 1997;77(1):F4–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsang RC, Uauy R, Koletzko B, Zlotkin SH. Nutrition of the preterm infant: scientific basis and practical guidelines. 2nd ed; 2005.

    Google Scholar 

  8. Teitelbaum DH, Coran AG. Perioperative nutritional support in pediatrics. Nutrition. 1998;14(1):130–42.

    Article  CAS  PubMed  Google Scholar 

  9. WHO. Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser. 1985;724:1–206.

    Google Scholar 

  10. FAO/WHO/UNU. Human energy requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. Rome: FAO; 2004. p. 1–96.

    Google Scholar 

  11. Pierro A, Carnielli V, Filler RM, Kicak L, Smith J, Heim TF. Partition of energy metabolism in the surgical newborn. J Pediatr Surg. 1991;26(5):581–6.

    Article  CAS  PubMed  Google Scholar 

  12. Freymond D, Schutz Y, Decombaz J, Micheli JL, Jequier E. Energy-balance, physical-activity, and thermogenic effect of feeding in premature-infants. Pediatr Res. 1986;20(7):638–45.

    Article  CAS  PubMed  Google Scholar 

  13. Reichman BL, Chessex P, Putet G, Verellen GJ, Smith JM, Heim T, et al. Partition of energy metabolism and energy cost of growth in the very low-birth-weight infant. Pediatrics. 1982;69(4):446–51.

    CAS  PubMed  Google Scholar 

  14. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 2. Energy. J Pediatr Gastroenterol Nutr. 2005;41:S5–S11.

    Article  Google Scholar 

  15. Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39(Suppl 1):5–41.

    PubMed  Google Scholar 

  16. Harris JA, Benedict FG. A biometric study of basal metabolism in man. Washington, Carnegie Institute of Washington; 1919.

    Google Scholar 

  17. Pierro A, Jones MO, Hammond P, Donnell SC, Lloyd DA. A new equation to predict the resting energy expenditure of surgical infants. J Pediatr Surg. 1994;29(8):1103–8.

    Article  CAS  PubMed  Google Scholar 

  18. Hill AG, Hill GL. Metabolic response to severe injury. Br J Surg. 1998;85(7):884–90.

    Article  CAS  PubMed  Google Scholar 

  19. Garza JJ, Shew SB, Keshen TH, Dzakovic A, Jahoor F, Jaksic T. Energy expenditure in ill premature neonates. J Pediatr Surg. 2002;37(3):289–93.

    Article  PubMed  Google Scholar 

  20. Powis MR, Smith K, Rennie M, Halliday D, Pierro A. Characteristics of protein and energy metabolism in neonates with necrotizing enterocolitis—a pilot study. J Pediatr Surg. 1999;34(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  21. Jaksic T, Shew SB, Keshen TH, Dzakovic A, Jahoor F. Do critically ill surgical neonates have increased energy expenditure? J Pediatr Surg. 2001;36(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  22. Bauer J, Hentschel R, Linderkamp O. Effect of sepsis syndrome on neonatal oxygen consumption and energy expenditure. Pediatrics. 2002;110(6):art-e69.

    Article  PubMed  Google Scholar 

  23. Mrozek JD, GEORGIEFF MK, Blazar BR, Mammel MC, Schwarzenberg SJ. Effect of sepsis syndrome on neonatal protein and energy metabolism. J Perinatol. 2000;20(2):96–100.

    Article  CAS  PubMed  Google Scholar 

  24. Jones MO, Pierro A, Hammond P, Lloyd DA. The metabolic response to operative stress in infants. J Pediatr Surg. 1993;28(10):1258–62.

    Article  CAS  PubMed  Google Scholar 

  25. Shanbhogue RLK, Lloyd DA. Absence of hypermetabolism after operation in the newborn- infant. J Parenter Enteral Nutr. 1992;16(4):333–6.

    Article  CAS  Google Scholar 

  26. Anand KJS, Sippell WG, Aynsley-Green A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1(8524):62–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chwals WJ, Letton RW, Jamie A, Charles B. Stratification of injury severity using energy-expenditure response in surgical infants. J Pediatr Surg. 1995;30(8):1161–4.

    Article  CAS  PubMed  Google Scholar 

  28. Anand KJS, Hickey PR. Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. N Engl J Med. 1992;326(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  29. Facchinetti F, Bagnoli F, Bracci R, Genazzani AR. Plasma opioids in the first hours of life. Pediatr Res. 1982;16(2):95–8.

    Article  CAS  PubMed  Google Scholar 

  30. Harrison RA, Lewin MR, Halliday D, Clark CG. Leucine kinetics in surgical patients. II: A study of the effect of malignant disease and tumour burden [see comments]. Br J Surg. 1989;76(5):509–11.

    Article  CAS  PubMed  Google Scholar 

  31. Carli F, Webster J, Pearson M, Forrest J, Venkatesan S, Wenham D, et al. Postoperative protein metabolism: effect of nursing elderly patients for 24 h after abdominal surgery in a thermoneutral environment. Br J Anaesth. 1991;66(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  32. Essen P, McNurlan MA, Wernerman J, Vinnars E, Garlick PJ. Uncomplicated surgery, but not general anesthesia, decreases muscle protein synthesis. Am J Physiol. 1992;262(3 Pt 1):E253–60.

    CAS  PubMed  Google Scholar 

  33. Powis MR, Smith K, Rennie M, Halliday D, Pierro A. Effect of major abdominal operations on energy and protein metabolism in infants and children. J Pediatr Surg. 1998;33(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  34. Groner JI, Brown MF, Stallings VA, Ziegler MM, O’Neill-JA J. Resting energy expenditure in children following major operative procedures. J Pediatr Surg. 1989;24(8):825–7.

    Article  CAS  PubMed  Google Scholar 

  35. Tilden SJ, Watkins S, Tong TK, Jeevanandam M. Measured Energy-Expenditure in Pediatric Intensive-Care Patients. Am J Dis Child. 1989;143(4):490–2.

    CAS  PubMed  Google Scholar 

  36. Phillips R, Ott L, Young B, Walsh J. Nutritional support and measured energy expenditure of the child and adolescent with head injury. J Neurosurg. 1987;67(6):846–51.

    Article  CAS  PubMed  Google Scholar 

  37. White MS, Shepherd RW, McEniery JA. Energy expenditure in 100 ventilated, critically ill children: Improving the accuracy of predictive equations. Crit Care Med. 2000;28(7):2307–12.

    Article  CAS  PubMed  Google Scholar 

  38. Briassoulis G, Venkataraman S, Thompson AE. Energy expenditure in critically ill children. Crit Care Med. 2000;28(4):1166–72.

    Article  CAS  PubMed  Google Scholar 

  39. Chwals WJ, Lally KP, Woolley MM, Mahour GH. Measured energy expenditure in critically ill infants and young children. J Surg Res. 1988;44(5):467–72.

    Article  CAS  PubMed  Google Scholar 

  40. Coss-Bu JA, Klish WJ, Walding D, Stein F, Smith EO, Jefferson LS. Energy metabolism, nitrogen balance, and substrate utilization in critically ill children. Am J Clin Nutr. 2001;74(5):664–9.

    Article  CAS  PubMed  Google Scholar 

  41. Turi RA, Petros A, Eaton S, Fasoli L, Powis M, Basu R, et al. Energy metabolism of infants and children with systemic inflammatory response syndrome and sepsis. Ann Surg. 2001;233:581–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taylor RM, Cheeseman P, Preedy VR, Baker AJ, Grimble GK. Can energy expenditure be predicted in critically ill children? Pediatr Crit Care Med. 2003;4:176–80.

    Article  PubMed  Google Scholar 

  43. Skillman HE, Wischmeyer PE. Nutrition therapy in critically ill infants and children. J Parenter Enteral Nutr. 2008;32(5):520–34.

    Article  Google Scholar 

  44. Rosenkrantz TS. Polycythemia and hyperviscosity in the newborn. Semin Thromb Hemost. 2003;29(5):515–27.

    Article  PubMed  Google Scholar 

  45. Modi N, Betremieux P, Midgley J, Hartnoll G. Postnatal weight loss and contraction of the extracellular compartment is triggered by atrial natriuretic peptide. Early Hum Dev. 2000;59(3):201–8.

    Article  CAS  PubMed  Google Scholar 

  46. Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19(5):823–32.

    CAS  PubMed  Google Scholar 

  47. Usher R, Lind J. Blood volume of the newborn premature infant. Acta Paediatr Scand. 1965;54:419–31.

    Article  CAS  PubMed  Google Scholar 

  48. Sisson TR, Lund CJ, Whalen LE, Telek A. The blood volume of infants. I. The full-term infant in the first year of life. J Pediatr. 1959;55(2):163–79.

    Article  CAS  PubMed  Google Scholar 

  49. Hazinski MF. Understanding fluid balance in the seriously ill child. Pediatr Nurs. 1988;14(3):231–6.

    CAS  PubMed  Google Scholar 

  50. Hall NJ, Drewett M, Wheeler RA, Griffiths DM, Kitteringham LJ, Burge DM. Trans-anastomotic tubes reduce the need for central venous access and parenteral nutrition in infants with congenital duodenal obstruction. Pediatr Surg Int. 2011;27(8):851–5.

    Article  CAS  PubMed  Google Scholar 

  51. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 9. Venous access. J Pediatr Gastroenterol Nutr. 2005;41:S54–62.

    Article  Google Scholar 

  52. Ainsworth SB, Clerihew L, McGuire W. Percutaneous central venous catheters versus peripheral cannulae for delivery of parenteral nutrition in neonates. Cochrane Database Syst Rev. 2007;3:CD004219.

    Google Scholar 

  53. NCEPOD. A mixed bag: An enquiry into the care of hospital patients receiving parenteral nutrition. In: Stewart JAD, Mason DG, Smith N, Protopapa K, Mason M, editors. London: National Confidential Enquiry into Patient Outcome and Death; 2010.

    Google Scholar 

  54. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 5. Carbohydrates. J Pediatr Gastroenterol Nutr. 2005;41:S28–32.

    Article  Google Scholar 

  55. Pierro A, Eaton S, Ong E. Neonatal physiology and metabolic considerations. In: Grosfeld JL, O’Neill JA, Fonkalsrud EW, Coran AG, editors. Pediatric Surgery. 6th ed. Philadelphia: Mosby Elsevier; 2006. p. 89–113.

    Chapter  Google Scholar 

  56. Cornblath M, Hawdon JM, Williams AF, Aynsley-Green A, Ward-Platt MP, Schwartz R, et al. Controversies regarding definition of neonatal hypoglycemia: Suggested operational thresholds. Pediatrics. 2000;105(5):1141–5.

    Article  CAS  PubMed  Google Scholar 

  57. Kao LS, Morris BH, Lally KP, Stewart CD, Huseby V, Kennedy KA. Hyperglycemia and morbidity and mortality in extremely low birth weight infants. J Perinatol. 2006;26(12):730–6.

    Article  CAS  PubMed  Google Scholar 

  58. Hallstrom M, Koivisto AM, Janas M, Tammela O. Laboratory parameters predictive of developing necrotizing enterocolitis in infants born before 33 weeks of gestation. J Pediatr Surg. 2006;41(4):792–8.

    Article  PubMed  Google Scholar 

  59. Hall NJ, Peters M, Eaton S, Pierro A. Hyperglycemia is associated with increased morbidity and mortality rates in neonates with necrotizing enterocolitis. J Pediatr Surg. 2004;39(6):898–901.

    Article  CAS  PubMed  Google Scholar 

  60. Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, Vanhole C, Palmer CR, van Weissenbruch M, et al. Early insulin therapy in very-low-birth-weight infants. N Engl J Med. 2008;359(18):1873–84.

    Article  CAS  PubMed  Google Scholar 

  61. Bottino M, Cowett RM, Sinclair JC. Interventions for treatment of neonatal hyperglycemia in very low birth weight infants. Cochrane Database Syst Rev. 2011;10:CD007453.

    Google Scholar 

  62. Macrae D, Pappachan J, Grieve R, Parslow R, Nadel S, Schindler M, et al. Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol. BMC Pediatr. 2010;10:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Nose O, Tipton JR, Ament ME, Yabuuchi H. Effect of the energy source on changes in energy expenditure, respiratory quotient, and nitrogen balance during total parenteral nutrition in children. Pediatr Res. 1987;21(6):538–41.

    Article  CAS  PubMed  Google Scholar 

  64. Van Aerde JE, Sauer PJ, Pencharz PB, Smith JM, Swyer PR. Effect of replacing glucose with lipid on the energy metabolism of newborn infants. Clin Sci. 1989;76(6):581–8.

    Article  Google Scholar 

  65. Pierro A, Jones MO, Hammond P, Nunn A, Lloyd DA. Utilisation of intravenous fat in the surgical newborn infant. Proc Nutr Soc. 1993;52:237A.

    Google Scholar 

  66. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 4. Lipids. J Pediatr Gastroenterol Nutr. 2005;41:S19–27.

    Article  Google Scholar 

  67. Clayton PT, Bowron A, Mills KA, Massoud A, Casteels M, Milla PJ. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology. 1993;105(6):1806–13.

    Article  CAS  PubMed  Google Scholar 

  68. Bianchi A. From the cradle to enteral autonomy: the role of autologous gastrointestinal reconstruction. Gastroenterology. 2006;130(2 Suppl 1):S138–46.

    Article  PubMed  Google Scholar 

  69. Cober MP, Teitelbaum DH. Prevention of parenteral nutrition-associated liver disease: lipid minimization. Curr Opin Organ Transplant. 2010;15(3):330–3.

    Article  PubMed  Google Scholar 

  70. Puder M, Valim C, Meisel JA, Le HD, De Meijer VE, Robinson EM, et al. Parenteral fish oil improves outcomes in patients with parenteral nutrition-associated liver injury. Ann Surg. 2009;250(3):395–402.

    PubMed  Google Scholar 

  71. Bishay M, Pichler J, Horn V, Macdonald S, Ellmer M, Eaton S, et al. Intestinal failure-associated liver disease in surgical infants requiring long-term parenteral nutrition. J Pediatr Surg. 2012;47(2):359–62.

    Article  PubMed  Google Scholar 

  72. Socha P, Koletzko B, Demmelmair H, Jankowska I, Stajniak A, Bednarska-Makaruk M, et al. Short-term effects of parenteral nutrition of cholestatic infants with lipid emulsions based on medium-chain and long-chain triacylglycerols. Nutrition. 2007;23(2):121–6.

    Article  CAS  PubMed  Google Scholar 

  73. Donnell SC, Lloyd DA, Eaton S, Pierro A. The metabolic response to intravenous medium-chain triglycerides in infants after surgery. J Pediatr. 2002;141(5):689–94.

    Article  CAS  PubMed  Google Scholar 

  74. Tomsits E, Pataki M, Tolgyesi A, Fekete G, Rischak K, Szollar L. Safety and Efficacy of a Lipid Emulsion Containing a Mixture of Soybean Oil, Medium-chain Triglycerides, Olive Oil, and Fish Oil: A Randomised, Double-blind Clinical Trial in Premature Infants Requiring Parenteral Nutrition. J Pediatr Gastroenterol Nutr. 2010;51(4):514–21.

    Article  CAS  PubMed  Google Scholar 

  75. Goulet O, Antebi H, Wolf C, Talbotec C, Alcindor LG, Corriol O, et al. A new intravenous fat emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil: a single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition. J Parenter Enteral Nutr. 2010;34(5):485–95.

    Article  CAS  Google Scholar 

  76. Flynn DM, Gowen H. Paediatric parenteral nutrition and lipid usage in the UK—A pick N’ mix situation? Clin Nutr. 2010;29(2):275–6.

    Article  PubMed  Google Scholar 

  77. Wesson DE, Hampton Rich R, Zlotkin SH, Pencharz PB. Fat overload syndrome causing respiratory insufficiency. J Pediatr Surg. 1984;19:777–8.

    Article  CAS  PubMed  Google Scholar 

  78. Pitkanen O, Hallman M, Andersson S. Generation of free-radicals in lipid emulsion used in parenteral- nutrition. Pediatr Res. 1991;29(1):56–9.

    Article  CAS  PubMed  Google Scholar 

  79. Basu R, Muller DPR, Eaton S, Merryweather I, Pierro A. Lipid peroxidation can be reduced in infants on total parenteral nutrition by promoting fat utilisation. J Pediatr Surg. 1999;34:255–9.

    Article  CAS  PubMed  Google Scholar 

  80. Denne SC, Poindexter BB. Evidence supporting early nutritional support with parenteral amino acid infusion. Semin Perinatol. 2007;31(2):56–60.

    Article  PubMed  Google Scholar 

  81. Zlotkin SH, Bryan MH, Anderson GH. Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. J Pediatr. 1981;99(1):115–20.

    Article  CAS  PubMed  Google Scholar 

  82. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R, for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 3. Amino Acids. J Pediatr Gastroenterol Nutr. 2005;41:S12–8.

    Article  Google Scholar 

  83. Kerner JA. Carbohydrate requirements. In: Kerner JA, editor. Manual of pediatric parenteral nutrition. New York: Wiley; 1983. p. 79–88.

    Google Scholar 

  84. American Academy of Pediatrics Committee on Nutrition. Commentary on parenteral nutrition. Pediatrics. 1983;71:547–52.

    Google Scholar 

  85. Zlotkin SH, Stallings VA, Pencharz PB. Total parenteral nutrition in children. Pediatr Clin North Am. 1985;32(2):381–400.

    Article  CAS  PubMed  Google Scholar 

  86. te Braake FWJ, van den Akker CHP, Riedijk MA, van Goudoever JB. Parenteral amino acid and energy administration to premature infants in early life. Semin Fetal Neonatal Med. 2007;12(1):11–8.

    Article  Google Scholar 

  87. Soghier LM, Brion LP. Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst Rev. 2006;4:CD004869.

    Google Scholar 

  88. Eaton S, Aufieri R, Pierro A. Functions of glutamine in critical illness. CAB Reviews: Perspectives in agriculture, veterinary science, nutrition and natural resources. 2010;5:013, 11 pp.

    Google Scholar 

  89. Lacey JM, Crouch JB, Benfell K, Ringer SA, Wilmore CK, Maguire D, et al. The effects of glutamine-supplemented parenteral nutrition in premature infants. J Parenter Enteral Nutr. 1996;20(1):74–80.

    Article  CAS  Google Scholar 

  90. Thompson SW, McClure BG, Tubman TR. A Randomized, Controlled Trial of Parenteral Glutamine in Ill, Very Low Birth-weight Neonates. J Pediatr Gastroenterol Nutr. 2003;37(5):550–3.

    Article  CAS  PubMed  Google Scholar 

  91. Poindexter BB, Ehrenkranz RA, Stoll BJ, Wright LL, Poole WK, Oh W, et al. Parenteral glutamine supplementation does not reduce the risk of mortality or late-onset sepsis in extremely low birth weight infants. Pediatrics. 2004;113(5):1209–15.

    Article  PubMed  Google Scholar 

  92. Albers MJ, Steyerberg EW, Hazebroek FW, Mourik M, Borsboom GJ, Rietveld T, et al. Glutamine supplementation of parenteral nutrition does not improve intestinal permeability, nitrogen balance, or outcome in newborns and infants undergoing digestive-tract surgery: results from a double-blind, randomized, controlled trial. Ann Surg. 2005;241(4):599–606.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ong EGP, Eaton S, Wade AM, Horn V, Losty PD, Curry JI, et al. Randomised controlled trial of glutamine supplemented versus regular parenteral nutrition of surgical infants. Br J Surg. 2012;99(7):929–38.

    Article  CAS  PubMed  Google Scholar 

  94. Becker RM, Wu GY, Galanko JA, Chen WN, Maynor AR, Bose CL, et al. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J Pediatr. 2000;137(6):785–93.

    Article  CAS  PubMed  Google Scholar 

  95. Zamora SA, Amin HJ, McMillan DD, Kubes P, Fick GH, Butzner JD, et al. Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J Pediatr. 1997;131(2):226–32.

    Article  CAS  PubMed  Google Scholar 

  96. Richir MC, Siroen MPC, van Elburg RM, Fetter WPF, Quik F, Nijveldt RJ, et al. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis. Br J Nutr. 2007;97(5):906–11.

    Article  CAS  PubMed  Google Scholar 

  97. Amin HJ, Zamora SA, McMillan DD, Fick GH, Butzner JD, Parsons HG, et al. Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr. 2002;140:425–31.

    Article  CAS  PubMed  Google Scholar 

  98. Moonen RM, Paulussen AD, Souren NY, Kessels AG, Rubio-Gozalbo ME, Villamor E. Carbamoyl phosphate synthetase polymorphisms as a risk factor for necrotizing enterocolitis. Pediatr Res. 2007;62(2):188–90.

    Article  CAS  PubMed  Google Scholar 

  99. Roberts SA, Ball RO, Moore AM, Filler RM, Pencharz PB. The effect of graded intake of glycyl-L-tyrosine on phenylalanine and tyrosine metabolism in parenterally fed neonates with an estimation of tyrosine requirement. Pediatr Res. 2001;49(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  100. Stapleton PP, Charles RP, Redmond HP, BouchierHayes DJ. Taurine and human nutrition. Clin Nutr. 1997;16(3):103–8.

    Article  CAS  PubMed  Google Scholar 

  101. Carver J. Conditionally essential nutrients. In: Hay WW, Thureen PJ, editors. Neonatal nutrition and metabolism. 2nd ed. Cambridge: Cambridge University Press; 2006. p. 301–11.

    Google Scholar 

  102. Wharton BA, Morley R, Isaacs EB, Cole TJ, Lucas A. Low plasma taurine and later neurodevelopment. Arch Dis Child. 2004;89(6):F497–8.

    Article  CAS  Google Scholar 

  103. Spencer AU, Yu S, Tracy TF, Aouthmany MM, Llanos A, Brown MB, et al. Parenteral nutrition-associated cholestasis in neonates: multivariate analysis of the potential protective effect of taurine. JPEN J Parenter Enteral Nutr. 2005;29:337–43.

    Article  CAS  PubMed  Google Scholar 

  104. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 7. Iron, Minerals and Trace Elements. J Pediatr Gastroenterol Nutr. 2005;41:S39–46.

    Article  Google Scholar 

  105. Eaton S. The biochemical basis of antioxidant therapy in critical illness. Proc Nutr Soc. 2006;65(3):242–9.

    Article  CAS  PubMed  Google Scholar 

  106. Darlow BA, Austin NC. Selenium supplementation to prevent short-term morbidity in preterm neonates. Cochrane Database Syst Rev. 2003;4:CD003312.

    Google Scholar 

  107. American Academy of Pediatrics Committee on Nutrition. Parenteral nutrition. In: Kleinman RE, editor. Pediatric nutrition handbook. 5th ed. Elk Grove Village: American Academy of Pediatrics; 2004. p. 369–89.

    Google Scholar 

  108. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. for the Parenteral Nutrition Guidelines Working Group. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). 8. Vitamins. J Pediatr Gastroenterol Nutr. 2005;41:S47–53.

    Article  Google Scholar 

  109. Bishay M, Retrosi G, Horn V, Cloutman-Green E, Harris K, De CP, et al. Chlorhexidine antisepsis significantly reduces the incidence of sepsis and septicemia during parenteral nutrition in surgical infants. J Pediatr Surg. 2011;46(6):1064–9.

    Article  PubMed  Google Scholar 

  110. Pierro A, van Saene HKF, Donnell SC, Hughes J, Ewan C, Nunn AJ, et al. Microbial translocation in neonates and infants receiving long-term parenteral-nutrition. Arch Surg. 1996;131(2):176–9.

    Article  CAS  PubMed  Google Scholar 

  111. Pierro A, van Saene HKF, Jones MO, Brown D, Nunn AJ, Lloyd DA. Clinical impact of abnormal gut flora in infants receiving parenteral nutrition. Ann Surg. 1998;227(4):547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Puntis JWL, Holden CE, Smallman S, Finkel Y, George RH, Booth IW. Staff training—a key factor in reducing intravascular catheter sepsis. Arch Dis Child. 1991;66(3):335–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bishay M, Retrosi G, Horn V, Cloutman-Green E, Harris K, De CP, et al. Septicaemia due to enteric organisms is a later event in surgical infants requiring parenteral nutrition. Eur J Pediatr Surg. 2012;22(1):50–3.

    Article  CAS  Google Scholar 

  114. Okada Y, Klein NJ, van Saene HK, Webb G, Holzel H, Pierro A. Bactericidal activity against coagulase-negative staphylococci is impaired in infants receiving long-term parenteral nutrition. Ann Surg. 2000;231(2):276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wilkins CE, Emmerson AJB. Extravasation injuries on regional neonatal units. Arch Dis Child. 2004;89(3):F274–5.

    Article  CAS  Google Scholar 

  116. Beath SV, on behalf of the BSPGHAN Nutrition Working Group. Review of current management practices in Intestinal Failure Associated Liver Disease. http://bspghan.org.uk/working_groups/documents/ReviewofcurrentmanagementpracticesinIntestinalFailureAssociatedLiverDisease.doc. 2010.

  117. Kelly DA. Preventing parenteral nutrition liver disease. Early Hum Dev. 2010;86(11):683–7.

    Article  CAS  PubMed  Google Scholar 

  118. Kubota A, Yonekura T, Hoki M, Oyanagi H, Kawahara H, Yagi M, et al. Total parenteral nutrition-associated intrahepatic cholestasis in infants: 25 years’ experience. J Pediatr Surg. 2000;35(7):1049–51.

    Article  CAS  PubMed  Google Scholar 

  119. Carter BA, Shulman RJ. Mechanisms of Disease: update on the molecular etiology and fundamentals of parenteral nutrition associated cholestasis. Nat Clin Pract Gastroenterol Hepatol. 2007;4(5):277–87.

    Article  CAS  PubMed  Google Scholar 

  120. Christensen RD, Henry E, Wiedmeier SE, Burnett J, Lambert DK. Identifying patients, on the first day of life, at high-risk of developing parenteral nutrition-associated liver disease. J Perinatol. 2007;27(5):284–90.

    Article  CAS  PubMed  Google Scholar 

  121. Watkins JB, Szczepanik P, Gould JB, Klein P, Lester R. Bile salt metabolism in the human premature infant. Preliminary observations of pool size and synthesis rate following prenatal administration of dexamethasone and phenobarbital. Gastroenterology. 1975;69(3):706–13.

    CAS  PubMed  Google Scholar 

  122. Venigalla S, Gourley GR. Neonatal cholestasis. Semin Perinatol. 2004;28(5):348–55.

    Article  PubMed  Google Scholar 

  123. Pichler J, Horn V, Macdonald S, Hill S. Intestinal failure-associated liver disease in hospitalised children. Arch Dis Child. 2012;97(3):211–4.

    Article  PubMed  Google Scholar 

  124. Sudan D, Thompson J, Botha J, Grant W, Antonson D, Raynor S, et al. Comparison of intestinal lengthening procedures for patients with short bowel syndrome. Ann Surg. 2007;246(4):593–601.

    Article  PubMed  Google Scholar 

  125. Khalil BA, Ba’ath ME, Aziz A, Forsythe L, Gozzini S, Murphy F, et al. Intestinal rehabilitation and bowel reconstructive surgery: improved outcomes in children with short bowel syndrome. J Pediatr Gastroenterol Nutr. 2012;54(4):505–9.

    Article  PubMed  Google Scholar 

  126. Dell-Olio D, Beath SV, de Ville de GJ, Clarke S, Davies P, Lloyd C, et al. Isolated liver transplant in infants with short bowel syndrome: insights into outcomes and prognostic factors. J Pediatr Gastroenterol Nutr. 2009;48(3):334–40.

    Article  CAS  PubMed  Google Scholar 

  127. Gupte GL, Beath SV, Protheroe S, Murphy MS, Davies P, Sharif K, et al. Improved outcome of referrals for intestinal transplantation in the UK. Arch Dis Child. 2007;92(2):147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Okada Y, Klein N, van Saene HK, Pierro A. Small volumes of enteral feedings normalise immune function in infants receiving parenteral nutrition. J Pediatr Surg. 1998;33(1):16–9.

    Article  CAS  PubMed  Google Scholar 

  129. Chowdhury MM, Pierro A. Gastrointestinal problems of the newborn. In: Guandalini S, editor. Textbook of pediatric gastroenterology and nutrition. London: Taylor & Francis; 2004. p. 579–98.

    Google Scholar 

  130. Bohnhorst B, Muller S, Dordelmann M, Peter CS, Petersen C, Poets CF. Early feeding after necrotizing enterocolitis in preterm infants. J Pediatr. 2003;143(4):484–7.

    Article  PubMed  Google Scholar 

  131. Jawaheer G, Pierro A, Lloyd D, Shaw N. Gall-bladder contractility in neonates—effects of parenteral and enteral feeding. Arch Dis Child. 1995;72(3):F200–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jawaheer G, Shaw NJ, Pierro A. Continuous enteral feeding impairs gallbladder emptying in infants. J Pediatr. 2001;138(6):822–5.

    Article  CAS  PubMed  Google Scholar 

  133. Mehall JR, Kite CA, Saltzman DA, Wallett T, Jackson RJ, Smith SD. Prospective study of the incidence and complications of bacterial contamination of enteral feeding in neonates. J Pediatr Surg. 2002;37(8):1177–82.

    Article  PubMed  Google Scholar 

  134. Hall NJ, Ward HC. Lactobezoar with perforation in a premature infant. Biol Neonate. 2005;88(4):328–30.

    Article  CAS  PubMed  Google Scholar 

  135. Shou J, Lappin J, Minnard EA, Daly JM. Total parenteral nutrition, bacterial translocation, and host immune function. Am J Surg. 1994;167(1):145–50.

    Article  CAS  PubMed  Google Scholar 

  136. Okada Y, Klein N, van Saene HK, Pierro A. Small volumes of enteral feedings normalise immune function in infants receiving parenteral nutrition. J Pediatr Surg. 1998;33(1):16–9.

    Article  CAS  PubMed  Google Scholar 

  137. Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28:169–81.

    CAS  PubMed  Google Scholar 

  138. Modi N. Fluid and electrolyte balance. In: Rennie JM, editor. Roberton’s textbook of neonatology. 4th ed. Edinburgh: Churchill Livingstone; 2005. p. 335–54.

    Google Scholar 

  139. Wells JCK, Davies PSW. Energy-cost of physical-activity in 12-week-old infants. Am J Hum Biol. 1995;7(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  140. Heird WC, Driscoll JM Jr, Schullinger JN, Grebin B, Winters RW. Intravenous alimentation in pediatric patients. J Pediatr. 1972;80(3):351–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Pierro MD, FRCS(Eng), OBE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eaton, S., De Coppi, P., Pierro, A. (2018). Fluid, Electrolyte and Nutritional Support of the Surgical Neonate. In: Losty, P., Flake, A., Rintala, R., Hutson, J., lwai, N. (eds) Rickham's Neonatal Surgery. Springer, London. https://doi.org/10.1007/978-1-4471-4721-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4721-3_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4720-6

  • Online ISBN: 978-1-4471-4721-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics