Skip to main content

Stiffness Analysis for Grasping Tasks

  • Chapter
  • First Online:
Grasping in Robotics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 10))

Abstract

This section addresses key aspects that are related with stiffness properties when dealing with grasping tasks. Main theoretical aspects are formulated for computing the Cartesian stiffness matrix via a proper stiffness analysis and modeling. Basic concepts are given for the comparison of stiffness performance for different robotic architectures and end-effectors by referring both to local and global properties. Cases of study are described for clarifying the effectiveness and engineering feasibility of the proposed formulation for stiffness analysis. Then, an experimental set-up and tests are proposed for the experimental validation of stiffness performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivin EI (1999) Stiffness and damping in mechanical design. Marcel Dekker Inc., New York

    Book  Google Scholar 

  2. Ceccarelli M (2004) Fundamentals of mechanics of robotic manipulation. Kluwer, Dordrecht

    MATH  Google Scholar 

  3. Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New York, pp 260–297

    Google Scholar 

  4. Duffy J (1996) Statics and kinematics with applications to robotics. Cambridge University Press, Cambridge, pp 153–169

    Book  Google Scholar 

  5. Nof SY (ed) (1985) Handbook of industrial robotics. Wiley, New York

    Google Scholar 

  6. Merlet J-P (2006) Parallel robots. Springer, Dordrecht

    MATH  Google Scholar 

  7. Carbone G (2003) Stiffness evaluation of multibody robotic systems. Ph D Dissertation, LARM, University of Cassino, Cassino

    Google Scholar 

  8. Gosselin C (1990) Stiffness mapping for parallel manipulators. IEEE Trans Robot Autom 6(3):377–382

    Article  Google Scholar 

  9. Tahmasebi F, Tsai LW (1992) Jacobian and stiffness analysis of a novel class of six-dof parallel minimanipulators. In: Proceedings of the ASME 22nd biennial mechanism conference, Scottsdale, vol 47, pp 95–102

    Google Scholar 

  10. Gosselin CM, Zhang D (2002) Stiffness analysis of parallel mechanisms using a lumped model. Int J Robot Autom 17(1):17–27

    Google Scholar 

  11. Simaan N, Shoham M (2003) Stiffness synthesis of a variable geometry six-degrees-of-freedom double planar parallel robot. Int J Robot Res 22(9):757–775

    Article  Google Scholar 

  12. Kim HY, Streit DA (1995) Configuration dependent stiffness of the Puma 560 manipulator: analytical and experimental results. Mech Mach Theory 30(8):1269–1277

    Article  Google Scholar 

  13. Ceccarelli M, Carbone G (2005) Numerical and experimental analysis of the stiffness performance of parallel manipulators. In: 2nd international colloquium collaborative research centre 562, Braunschweig, pp 21–35

    Google Scholar 

  14. Chakarov D (2001) Analysis and synthesis of the stiffness of a hybrid manipulator with redundant actuation. In: Proceedings of the 5th Magdeburg days of mechanical engineering, Magdeburg, pp 119–127

    Google Scholar 

  15. Ciblak N, Lipkin H (1999) Synthesis of cartesian stiffness for robotic applications. In: Proceedings of the IEEE international conference on robotics and automation ICRA’99, Detroit, vol 3, pp 2147–2152

    Google Scholar 

  16. Pigoski T, Griffis M, Duffy J (1998) Stiffness mappings employing different frames of reference. Mech Mach Theory 33(6):825–8381998

    Article  MATH  Google Scholar 

  17. Carbone G, Ceccarelli M (2004) A stiffness analysis for a hybrid parallel-serial manipulator. Robot Int J 22:567–576

    Google Scholar 

  18. Ceccarelli M, Carbone G (2002) A stiffness analysis for CaPaMan (Cassino parallel manipulator). Mech Mach Theory 37(5):427–439

    Article  MATH  Google Scholar 

  19. Svinin MM, Hosoe S, Uchiyama M, Luo ZW (2002) On the stiffness and stiffness control of redundant manipulators. In: IEEE international conference on robotics & automation ICRA 2002, Washington, pp 2393–2399

    Google Scholar 

  20. Cutkosky MR, Kao I (1989) Computing and controlling the compliance of a robotic hand. IEEE Trans Robot Autom 5(2):151–165

    Article  Google Scholar 

  21. Tsumugiwa T, Yokogawa R, Hara K (2002) Variable impedance control with virtual stiffness for human-robot cooperative peg-in-hole task. In: Proceedings of the IEEE/RSJ international conference on intelligent robots ans systems IROS’02, Lausanne, pp 1075–1081

    Google Scholar 

  22. Chakarov D (1998) Optimization synthesis of parallel manipulators with desired stiffness. J Theor Appl Mech 28(4). Avaliable. http://www.imbm.bas.bg/IMBM/LMS/Chakarov/TPM98.pdf

  23. Liu X-J, Jin Z-L, Gao F (2000) Optimum design of 3-dof spherical parallel manipulators with respect to the conditioning and stiffness indices. Mech Mach Theory 35(9):1257–12672000

    Article  Google Scholar 

  24. Carbone G, Ottaviano E, Ceccarelli M (2007) An optimum design procedure for both serial and parallel manipulators. IMechE Part C J Mech Eng Sci 221(7):829–843

    Article  Google Scholar 

  25. Huang S, Schimmels JM (2000) The bounds and realization of spatial compliances achieved with simple springs connected in parallel. IEEE Trans Robot Autom 14(3):466–475

    Article  Google Scholar 

  26. Zefran M, Kumar V (1997) Affine connections for the cartesian stiffness matrix. In: Proceedings of the IEEE international conference on robotics and automation ICRA’97, Albuquerque, vol 2, pp 1376–1381

    Google Scholar 

  27. Howard S, Zefran M, Kumar V (1998) On the 6 × 6 Cartesian stiffness matrix for three-dimensional motions. Mech Mach Theory 33(4):389–408

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen S-F, Kao I (2000) Geometrical method for modeling of asymmetric 6 × 6 cartesian stiffness matrix. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems IROS2000, Takamatsu, pp 1217–1222

    Google Scholar 

  29. Pham DT, Heginbotham WB (1986) Robot grippers. IFS Publications Ltd, Bedford

    Google Scholar 

  30. Rosheim ME (1996) Robot surrogate: work in progress. In: International conference on robotics and automation, Minnesota, pp 399–403

    Google Scholar 

  31. Cutkosky MR (1989) On grasp choice, grasp model, and the design of hands for manufacturing tasks. IEEE Trans Robot Autom 5(3):269–279

    Article  MathSciNet  Google Scholar 

  32. Iberal T (1997) Human prehension and dexterous robot hands. Int J Robot Res 6(3):285–299

    Article  Google Scholar 

  33. Fukaya N, Toyama S, Asfour T, Dillmann R (2000) Design of the TUAT/Karlsruhe humanoid hand. In: IEEE/RSJ international conference on intelligent robots and systems, Takamatsu, vol 3, pp 1754–1759

    Google Scholar 

  34. Butterfass J, Grebenstein M, Liu H, Hirzinger G (2001) DLR-Hand II: next generation of a dexterous robot hand. In: IEEE international conference on robotics and automation, Seoul Korea, pp 109–114

    Google Scholar 

  35. Zhang Y, Han Z, Zhan H, Shang X, Wang T, Guo W (2001) Design and control of the BUAA four-fingered hand. IEEE Trans Robot Autom 3:2517–2522

    Google Scholar 

  36. Gosselin CM, Mountambault S, Gosselin CJ (1993) Manus Colobi: preliminary results on the design of a mechanical hand for industrial applications. In: 19th ASME design automation, Albuquerque, vol 65–1, pp 585–592

    Google Scholar 

  37. Dechev N, Cleghorn WL, Nauman S (1999) Multiple finger, passive adaptive grasp proshetic hand. Mech Mach Theory 36:1157–1173

    Article  Google Scholar 

  38. Townsend WT (2000) The Barretthand grasper—programmably flexible parts handling and assembly. Ind Robot Int J 27(3):181–188

    Article  MathSciNet  Google Scholar 

  39. Venkataraman ST, Iberall T (eds) (1989) Dexterous robot hands. Springer, New York

    Google Scholar 

  40. Boudreault E, Gosselin C (2006) Design of sub-centimetre underactuated compliant gripper. In: Proceedings of IDETC/CIE 2006 ASME 2006, 30th mechanisms & robotics conference, Philadelphia. Paper DETC2006-99415

    Google Scholar 

  41. Ceccarelli M, Luyckx I, Vanaelten W (1996) Grasp forces in two-finger grippers: modeling and measuring. In: 5th international workshop on robotics in Alpe-Andria Danube region RAAD’96, Budapest, pp 321–326

    Google Scholar 

  42. Ceccarelli M, Nava Rodriguez NE, Carbone G (2006) Design and tests of a three-finger hand with 1-dof articulated fingers. Robot Int J 24(2):183–196

    Google Scholar 

  43. Carbone G, González A (2011) Numerical simulation of the grasp operation by LARM hand IV, A three finger robotic hand. Robot Comput Integr Manuf 27(2):450–459

    Article  Google Scholar 

  44. Carbone G, Jeckel M, Havlík S, Ceccarelli M (2003) An optimum multi-objective design procedure for microgripping mechanisms. In: 12th international workshop on robotics in Alpe-Andria-Danube region RAAD 2003, Cassino, paper 055RAAD03

    Google Scholar 

  45. Penisi OH, Carbone G, Ceccarelli M (2002) Optimum design and testing of mechanisms for two-finger grippers. Int J Mech Control 03(01):9–20

    Google Scholar 

  46. Ceccarelli M, Carbone G, Kerle H (2001) Designing mechanisms for two-finger microgrippers. In: CD proceedings of the 10th workshop on robotics and Alpe-Adria-Danube region RAAD’01, Wien, paper RD-021

    Google Scholar 

  47. Carbone G, Ceccarelli M, Kerle H, Raatz A (2001) Design and experimental validation of a microgripper. Fuji Int J Robot Mechatron 13(3):319–325

    Google Scholar 

  48. Ceccarelli M, Carbone G (2010) Design and operation of fingered hands and two-finger grippers for space applications as from experiences at LARM. In: IX international scientific-technical conference. Control vibration technologies and machines VIBRATION 2010, Kursk, pp 208–216 (in Russian) ISBN 978-5-7681-0561

    Google Scholar 

  49. Lanni C, Carbone G, Havlík Š, Ceccarelli M (2007) Experimental validation of a milli-gripper based on Chebyshev mechanism. In: Proceedings of the 16th international workshop on robotics in Alpe-Adria-Danube region, Ljubljana, CD Proceedings, paper n. FP_GG2, pp 42–51

    Google Scholar 

  50. Vaishnav RN, Magrab EB (1987) A general procedure to evaluate robot positioning errors. Int J Robot Res 6(1):59–74

    Article  Google Scholar 

  51. ANSI, American National Standards Institute (1990) American national standard for industrial robots and robot systems: point-to-point and static performance characteristics—evaluation. ANSI/RIA 15.05-1-1990, New York

    Google Scholar 

  52. UNI, Italian National Institute for Standards (1995) Manipulating industrial robots: performance criteria and related test methods. UNI EN 29283 (= ISO 9283), Milan

    Google Scholar 

  53. Carbone G, Ceccarelli M (2004) A procedure for experimental evaluation of Cartesian stiffness matrix. In: 15th CISM-IFToMM symposium on robot design, dynamics and control, paper Rom04-24, Montreal

    Google Scholar 

  54. Carbone G, Ceccarelli M (2010) A comparison of indices for stiffness performance evaluation. Front Mech Eng 5(3):270–278. doi:10.1007/s11465-010-0023-z

    Article  Google Scholar 

  55. Pratt GA, Williamson MM, Dillworth P, Pratt J, Ulland K, Wright A (1995) Stiffness isn’t everything. In: Preprints of the 4th international symposium on experimental robotics ISER’95, Stanford, available. http://www.ai.mit.edu/projects/leglab/publications/sitffness_isnt_everything.pdf

  56. Schimmels JM (2001) Multidirectional compliance and constraint for improved robotic deburring. Part 1: improved positioning. Robot Comput Integr Manuf 17(4):277–286

    Article  Google Scholar 

  57. English CE, Russell D (1999) Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs. Mech Mach Theory 34(1):7–25

    Article  MATH  Google Scholar 

  58. Alici G, Shirinzadeh B (2003) Exact stiffness analysis and mapping for a 3-SPS + S parallel manipulator. In: 7th international conference on automation technology AUTOMATION 2003, Taiwan, paper F120

    Google Scholar 

  59. Zhou Y, Nelson BJ (1998) Adhesion force modeling and measurement for micromanipulation, microrobotics and micromanipulation. In: Sulzmann A, Nelson BJ (eds) International society for optical engineering, vol 3519. SPIE, Boston, pp 169–180

    Google Scholar 

  60. MSC.ADAMS (2010) Documentation and Help. User CD-ROM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Carbone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Carbone, G. (2013). Stiffness Analysis for Grasping Tasks. In: Carbone, G. (eds) Grasping in Robotics. Mechanisms and Machine Science, vol 10. Springer, London. https://doi.org/10.1007/978-1-4471-4664-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4664-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4663-6

  • Online ISBN: 978-1-4471-4664-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics