Skip to main content

Vehicle Mechatronic Systems

  • Chapter
  • First Online:
Intelligent Mechatronic Systems

Abstract

In this chapter, we develop models for various mechatronic components used in modern road vehicles. To start with, we develop a complete vehicle model by integrating its various basic component models like vehicle body, tires, wheels, engine, clutch, gear box, differential, transmission system, suspension, steering, etc. Mechatronic implementations of functionalities of some of these elements are considered next. We consider various active and semi-active suspensions, anti-roll bar, power steering, antilock and regenerative braking systems, and automatic transmission systems. In addition to these, we consider the hybrid vehicle system with power split device (PSD), torque converter, and fuel cells. Detailed models of two types of fuel cells, namely solid oxide fuel cell and proton exchange membrane fuel cell, along with their control circuits are developed at the end of the chapter. This chapter showcases the application of bond graph modeling to chemical kinetics and thermodynamics (engine, fuel cells, heat exchanger, etc.) as part of complex mechatronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is partly adapted from these authors’ previous works published in [6, 8].

  2. 2.

    A part of this section is taken from these authors’ previous work published in [65].

  3. 3.

    A part of this section is taken from these authors’ previous work published in [6, 8].

  4. 4.

    A part of this section is taken from these authors’ previous work published in [7173].

References

  1. V. Aesoy, H. Engja, L.A. Skarboe, Fuel injection system design, analysis and testing using bond graph as an efficient modelling tool. SAE Spec. Publ. 1205, 159–168 (1996)

    Google Scholar 

  2. P. Aguiar, C.S. Adjiman, N.P. Brandon, Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell I. model-based steady-state performance. J. Power Sources 138, 120–136 (2004)

    Article  Google Scholar 

  3. M. Alirand, F. Gallo, Development of a powerful drive line library in amesim to model transmission systems. in Global Powertrain Congress, Advanced Transmission Design and Performance (Stuttgart, Germany, 1999), pp. 66–74

    Google Scholar 

  4. D. Assanis, W. Bryzik, N. Chalhoub, Z. Filipi, N. Henein, D. Jung, X. Liu, L. Louca, J. Moskwa, S. Munns, J. Overholt, P. Papalambros, S. Riley, Z. Rubin, P. Sendur, J. Stein, G. Zhang, Integration and use of diesel engine, driveline and vehicle dynamics models for heavy duty truck simulation. SAE Paper 1999–01-0970 (1999)

    Google Scholar 

  5. R.S. Benson, Advanced Engineering Thermodynamics, 2nd ed. (Pergamon Press, Oxford, 1977)

    Google Scholar 

  6. T.K. Bera, K. Bhattacharyya, A.K. Samantaray, Bond graph model based evaluation of a sliding mode controller for combined regenerative and antilock braking system. Proc. ImechE Part I J. Syst. Contr. Eng. 225(7), 918–934 (2011)

    Google Scholar 

  7. T.K. Bera, A.K. Samantaray, R. Karmakar, Bond graph modelling of planar prismatic joints. Mech. Mach. Theor. 49(12), 2–20 (2012)

    Article  Google Scholar 

  8. T.K. Bera, K. Bhattacharya, A.K. Samantaray, Evaluation of antilock braking system with an integrated model of full vehicle system dynamics. Simul. Model. Pract. Theor. 19(10), 2131–2150 (2011)

    Article  Google Scholar 

  9. J.O’M Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry: Fundamentals of Electrodics, 2nd edn, (Kluwer Academic/Plenum Publishers, New York, 1998)

    Google Scholar 

  10. A.M. Bos, Modelling Multibody Systems in Terms of Multibond Graphs. Ph.D. thesis, University of Twente, 1986

    Google Scholar 

  11. P.C. Breedveld, Physical Systems Theory in terms of Bond Graphs. Ph.D. thesis, Twente University, Enschede, 1984

    Google Scholar 

  12. L.T. Brown, D. Hrovat, Transmission clutch loop transfer control. U.S. Patent 4,790,419, 1988

    Google Scholar 

  13. K. Bruun, Bond Graph Modelling of Fuel Cells for Marine Power Plants. Ph.D. thesis, Norwegian University of Science and Technology, Department of Marine Technology, 2009

    Google Scholar 

  14. M. Burckhardt, Antiskid systems compared. Oelhydraul. Pneum. 28(8), 489–491 (1984)

    Google Scholar 

  15. M. Burckhardt, E.C. Glasner von Ostenwall, H. Krohn, Capabilities and limits of antilock systems (moeglichkeiten und grenzen von antiblockiersystemen). ATZ Automobiltechnische Zeitschrift 77(1), 13–18 (1975)

    Google Scholar 

  16. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)

    Google Scholar 

  17. R.M. Chalasani, Ride performance potential of active suspension systems—part I: Simplified analysis based on a quarter-car model. in Proceedings of 1986 ASME Winter Annual Meeting (Los Angeles, CA, 1986), p. 1986

    Google Scholar 

  18. W.H. Crouse, D.L. Anglin, Automotive Mechanics (TATA McGraw-Hill, New Delhi, 1995)

    Google Scholar 

  19. W. Drozdz, H.B. Pacejka, Development and validation of a bond graph handling model of an automobile. J. Franklin Inst. 328(5/6), 941–957 (1991)

    Article  Google Scholar 

  20. Hallvard Engja, Bond graph model of a reciprocating compressor. J. Franklin Inst. 319(1–2), 115–124 (1985)

    Google Scholar 

  21. Tulga Ersal, Hosam K. Fathy, Jeffrey L. Stein, Structural simplification of modular bond-graph models based on junction inactivity. Simul. Model. Pract. Theor. 17(1), 175–196 (2009)

    Article  Google Scholar 

  22. P.J. Feenstra, A library of port-based thermo-fluid submodels, MS thesis, University of Twente, 2000

    Google Scholar 

  23. A.A. Franco, P. Schott, C. Jallut, B. Maschke, Multi-scale bond graph model of the electrochemical dynamics in a fuel cell. in Proceedings of 5th MATHMOD Conference (Vienna, Austria, 2005)

    Google Scholar 

  24. W. Gao, C. Mi, A. Emadi, Modeling and simulation of electric and hybrid vehicles. Proc. IEEE 95(4), 729–745 (2007)

    Article  Google Scholar 

  25. T.D. Gillespie, Fundamentals of vehicle dynamics. Soc. Automot. Eng. 1361–1370 (1992). ISBN: 1560911999

    Google Scholar 

  26. J.J. Granda, The role of bond graph modeling and simulation in mechatronics systems: an integrated software tool: CAMP-G. MATLAB-SIMULINK. Mechatron. 12, 1271–1295 (2002)

    Article  Google Scholar 

  27. G.J. Heydinger, M.K. Salaani, W.R. Garrott, P.A. Grygier, Vehicle dynamics modelling for the national advanced driving simulator. Proc. Inst. Mech. Eng. Part D J. Automobile Eng. 216(4), 307–318 (2002)

    Google Scholar 

  28. D. Hrovat, J. Asgari, M. Fodor, Mechatronic Systems Techniques and Applications of Transportation and Vehicular Systems, vol. 2, chapter Automotive Mechatronic Systems, (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 1–98

    Google Scholar 

  29. F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 4th edn. (Wiley, New York, 1996)

    Google Scholar 

  30. V. Ivanovic, J. Deur, Z. Herold, M. Hancock, F. Assadian, Modelling of electromechanically actuated active differential wet-clutch dynamics. Proc. IMechE Part D J. Automobile Eng. 226, 433–456 (2012)

    Google Scholar 

  31. D. Karnopp, Bond graph for vehicle dynamics. Veh. Syst. Dyn. 5, 171–184 (1976)

    Article  Google Scholar 

  32. D. Karnopp, Pseudo bond graphs for thermal energy transport. Trans. ASME J. Dyn. Syst. Meas. Contr. 100(3), 165–169 (1978)

    Article  MathSciNet  Google Scholar 

  33. D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Measur. Contr. Trans. ASME 107(1), 100–103 (1985)

    Article  Google Scholar 

  34. D. Karnopp, Modelling and simulation of adaptive vehicle air suspensions with pseudo bond graphs in CAMP and ACSL. in Proceedings of 11th IMACS World Congress on System Simulation and Scientific Computation (Oslo, Norway, 1985)

    Google Scholar 

  35. D. Karnopp, Bond graph models for electrochemical energy storage: electrical, chemical and thermal effects. J. Franklin Inst. 327(6), 983–992 (1990)

    Article  Google Scholar 

  36. D. Karnopp, Design principles for vibration control systems using semi-active dampers. Trans. ASME J. Dyn. Syst. Measur. Contr. 112(3), 448–455 (1990)

    Article  Google Scholar 

  37. D. Karnopp, Power requirements for vehicle suspension systems. Veh. Syst. Dyn. 21(2), 65–71 (1992)

    Article  MathSciNet  Google Scholar 

  38. D. Karnopp, Active and semi-active vibration isolation. J. Mech. Des. 117B, 177–185 (1995)

    Article  Google Scholar 

  39. D.C. Karnopp, State variables and pseudo-bond graphs for compressible thermo-fluid systems. J. Dyn. Syst. Measur. Contr. 101(3), 201–204 (1979)

    Article  Google Scholar 

  40. K. Li, J.A. Misener, K. Hedrick, On-board road condition monitoring system using slip-based tyre-road friction estimation and wheel speed signal analysis. Proc. IMechE J. Multi-body Dyn. 221, 129–146 (2007)

    Google Scholar 

  41. P.Y. Li, R.F. Ngwompo, Power scaling bond graph approach to the passification of mechatronic systems—with application to electrohydraulic valves. J. Dyn. Syst. Measur. Contr. 127(4), 633–641 (2005)

    Article  Google Scholar 

  42. R.G. Longoria, A. Al-Sharif, C.B. Patil, Scaled vehicle system dynamics and control: a case study in anti-lock braking. Int. J. Veh. Auton. Syst. 2(1/2), 18–39 (2004)

    Article  Google Scholar 

  43. L.S. Louca, D.G. Rideout, J.L. Stein, G.M. Hulbert, Generating proper dynamic models for truck mobility and handling. Int. J. Heavy Veh. Syst. 11(3–4), 209–236 (2004)

    Google Scholar 

  44. L.S. Louca, J.L. Stein, D.G. Rideout, Integrated proper vehicle modeling and simulation using a bond graph formulation. in Proceedings of the 2001 International Conference on Bond Graph Modeling (ICBGM’01), vol. 33, No. 1, pp. 339–345 (2010)

    Google Scholar 

  45. D. Margolis, Bond graph for vehicle stability analysis. Int. J. Veh. Des. 5, 427–437 (1984)

    Google Scholar 

  46. D. Margolis, J. Asgari, Multipurpose models of vehicle dynamics for controller design. SAE Technical Paper 911927 (1991). doi: 10.4271/911927

  47. D. Margolis, T. Shim, A bond graph model incorporating sensors, actuators, and vehicle dynamics for developing controllers for vehicle safety. J. Franklin Inst. 338(1), 21–34 (2001)

    Article  MATH  Google Scholar 

  48. D.L. Margolis, Modeling of two-stroke internal combustion engine dynamics using the bond graph technique. SAE Technical Paper 2263–2275 (1975). doi: 10.4271/750860

  49. W. Marquis-Favre, E. Bideaux, O. Mechin, S. Scavarda, F. Guillemard, M. Ebalard, Mechatronic bond graph modelling of an automotive vehicle. Math. Comput. Model. Dyn. Syst. 12(2–3), 189–202 (2006)

    Google Scholar 

  50. R. Merzouki, B. Ould Bouamama M.A. Djeziri, and M. Bouteldja., Modelling and estimation of tire-road longitudinal impact efforts using bond graph approach. Mechatronics 17(2–3), 93–108 (2007)

    Google Scholar 

  51. H. Mirzaeinejad, M. Mirzaei, A novel method for non-linear control of wheel slip in anti-lock braking systems. Contr. Eng. Pract. 18(8), 918–926 (2010)

    Article  Google Scholar 

  52. A. Mukherjee, R. Karmakar, A.K. Samantaray, Bond Graph in Modeling, Simulation and Fault Identification (CRC Press, USA, 2006), ISBN: 978-8188237968, 1420058657

    Google Scholar 

  53. T. Nakayama, E. Suda, The present and future of electric power steering. Int. J. Veh. Des. 15(3–5), 243–254 (1994)

    Google Scholar 

  54. L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Google Scholar 

  55. M. Oudghiri, M. Chadli, A.E. Hajjaji, Robust fuzzy sliding mode control for antilock braking system. Int. J. Sci. Tech. Autom. Contr. 1(1), 13–28 (2007)

    Google Scholar 

  56. B. Ozdalyan, Development of a slip control anti-lock braking system model. Int. J. Automot. Technol. 9(1), 71–80 (2008)

    Article  Google Scholar 

  57. H.B. Pacejka, Modelling complex vehicle systems using bond graphs. J. Franklin Inst. 319(1/2), 67–81 (1985)

    Article  MATH  Google Scholar 

  58. H.B. Pacejka, Tyre and Vehicle Dynamics (Butterworth-Heinemann, Elsevier, UK, 2006)

    Google Scholar 

  59. P.M. Pathak, A.K. Samantaray, R. Merzouki, B. Ould-Bouamama, Reconfiguration of directional handling of an autonomous vehicle. in IEEE Region 10 Colloquium and 3rd International Conference on Industrial and Information Systems, ICIIS 2008, Art. no. 4798408 (2008). doi: 10.1109/ICIINFS.2008.4798408

  60. C. Peraza, J.G. Diaz, F.J. Arteaga-Bravo, C.C. Villanueva, F. Gonzalez-Longatt, Modeling and simulation of PEM fuel cell with bond graph and 20sim. in Proceedings of the American Control Conference, Art. no. 4587303, pp. 5104–5108 (2008)

    Google Scholar 

  61. A.S. Perelson, Network thermodynamics, an overview. Biophys. J. 15, 667–685 (1975)

    Article  Google Scholar 

  62. R. Rajamani, Vehicle Dynamics and Control (Springer, New York, 2006)

    MATH  Google Scholar 

  63. R. Saisset, G. Fontes, C. Turpin, S. Astier, Bond graph model of a PEM fuel cell. J. Power Sources 156(1), 100–107 (2006)

    Google Scholar 

  64. M.K. Salaani, G.J. Heydinger, Powertrain and brake modeling of the 1994 Ford Taurus for the national advanced driving simulator. SAE Special Publ. 1361, 131–143 (1998)

    Google Scholar 

  65. A.K. Samantaray, Modeling and analysis of preloaded liquid spring/damper shock absorbers. Simul. Model. Pract. Theor. 17(1), 309–325 (2009)

    Article  Google Scholar 

  66. A.K. Samantaray, B. Ould Bouamama, Model-Based Process Supervision—A Bond Graph Approach (Springer, London, 2008)

    Google Scholar 

  67. S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Elsevier, Oxford, 2003)

    Google Scholar 

  68. H.T. Szostak, W.R. Allen, T.J. Rosenthal, Analytical modeling of driver response in crash avoidance maneuvering. volume II: An interactive model for driver/vehicle simulation. Technical Report, U.S. Department of Transportation Report NHTSA DOT HS-807-271, 1988

    Google Scholar 

  69. J.U. Thoma, B. Ould Bouamama, Modelling and Simulation in Thermal and Chemical Engineering. Bond Graph Approach (Springer, Telos, 2000)

    Google Scholar 

  70. P. Vijay, Modelling, Simulation and Control of a Solid Oxide Fuel Cell System: A Bond Graph Approach Ph.D. thesis, (Indian Institute of Technology, Kharagpur, India, 2009)

    Google Scholar 

  71. P. Vijay, A.K. Samantaray, A. Mukherjee, Bond graph model of a solid oxide fuel cell with a C-field for mixture of two gas species. Proc. IMechE Part I J. Syst. Contr. Eng. 222(4), 247–259 (2008)

    Article  Google Scholar 

  72. P. Vijay, A.K. Samantaray, A. Mukherjee, A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell. Mechatronics 19(4), 489–502 (2009)

    Article  Google Scholar 

  73. P. Vijay, A.K. Samantaray, A. Mukherjee, On the rationale behind constant fuel utilization control of solid oxide fuel cells. Proc. IMechE Part I J. Syst. Contr. Eng. 223(2), 229–252 (2009)

    Article  Google Scholar 

  74. P. Vijay, A.K. Samantaray, A. Mukherjee, Constant fuel utilization operation of a SOFC system: An efficiency viewpoint. Trans. ASME J. Fuel Cell Sci. Technol. 7(4), 041011 (7 pages) (2010)

    Google Scholar 

  75. P. Vijay, A.K. Samantaray, A. Mukherjee, Parameter estimation of chemical reaction mechanisms using thermodynamically consistent kinetic models. Comput. Chem. Eng. 34(6), 866–877 (2010)

    Article  Google Scholar 

  76. H. Yeo, S. Hwang, H. Kim, Regenerative braking algorithm for a hybrid electric vehicle with CVT ratio control. IMechE J. Automobile Engineering 220, 1589–1600 (2006)

    Article  Google Scholar 

  77. M.W. Zemansky, D.H. Dittman, Heat and Thermodynamics (McGraw-Hill, Singapore, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochdi Merzouki .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Merzouki, R., Samantaray, A.K., Pathak, P.M., Ould Bouamama, B. (2013). Vehicle Mechatronic Systems. In: Intelligent Mechatronic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-4628-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4628-5_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4627-8

  • Online ISBN: 978-1-4471-4628-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics