Skip to main content

Rigid Body, Flexible Body, and Micro Electromechanical Systems

  • Chapter
  • First Online:
Intelligent Mechatronic Systems

Abstract

Planar multibody systems, and revolute and prismatic joints with clearance and friction are initially modeled in this chapter with Rapson slide and Andrew’s mechanism as two examples. For modeling spatial multibody systems, the concepts of noninertial reference frame, Euler angles, and coordinate transformations, etc., are introduced. Hydraulically actuated leg of a Stewart platform and spinning top are modeled as examples. Flexible body systems such as beams, beam columns, composite beams, and bimetallic strips are modeled through spatial discretization and lumped parameter approximation. A thorough treatment is given to modeling of piezoelectric actuators and sensors. Thereafter, models for various microelectromechanical systems (MEMS) like micromirrors, micromotors, magnetohydrodynamic micropumps, wet shape memory alloy (SMA) actuator, and energy harvesting systems, etc. are developed. Further, models of rotor-bearing systems with rolling element, journal, and magnetic bearings are developed with special emphasis on active magnetic bearing model. The importance of integrated modeling is shown by considering the case of Sommerfeld effect in a rotor dynamic system and its control through shape memory alloy actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A part of this section is adapted from these authors’ previous work published in [7].

  2. 2.

    A part of this section is taken from these authors’ previous work published in [121, 126].

References

  1. S. Ahmed, H.M. Lankarani, M.F.O.S. Pereira, Frictional impact analysis in open-loop multibody mechanical systems. Trans. ASME J. Mech. Des. 121(1), 119–127 (1999)

    Article  Google Scholar 

  2. B.J. Aleck, Thermal stresses in a rectangular plate clamped along an edge. ASME J. Appl. Mech. 16, 118–122 (1949)

    MathSciNet  MATH  Google Scholar 

  3. W.T. Ang, F.A. Garmn, P.K. Khosla, C.N. Riviere, Modeling rate-dependent hysteresis in piezoelectric actuators, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003

    Google Scholar 

  4. K.J. Astrom, C. Canudas de Wit, H. Olsson, P. Lischinsky, A new model for the control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Article  MathSciNet  Google Scholar 

  5. J.M. Balthazar, D.T. Mook, H.I. Weber, R.M.L.R.F. Brasil, A. Fenili, D. Belato, J.L.P. Felix, An overview on non-ideal vibrations. Meccanica 38, 613–621 (2003)

    Google Scholar 

  6. S. Behzadipour, A. Khajepour, Causality in vector bond graphs and its application to modeling of multi-body dynamic systems. Simul. Model. Pract. Theory 14(3), 279–295 (2006)

    Article  Google Scholar 

  7. T.K. Bera, A.K. Samantaray, Consistent bond graph modeling of planar multibody systems. World J. Model. Simul. 7(3), 173–178 (2011)

    Google Scholar 

  8. A.N. Bercin, M. Tanaka, Coupled flexural-torsional vibrations of Timoshenko beams. J. Sound Vib. 207(1), 47–59 (1997)

    Article  Google Scholar 

  9. R. Bhattacharyya, A. Mukherjee, A.K. Samantaray, Harmonic oscillations of non-conservative, asymmetric, two-degree-of-freedom systems. J. Sound Vib. 264, 973–980 (2003)

    Article  Google Scholar 

  10. D. Biolek, Z. Biolek, V. Biolkova, Spice modelling of memcapacitor. Elect. Lett. 46(7), 520–522 (2010)

    Article  Google Scholar 

  11. I.I. Blekhman, Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications (World Scientific, Singapore, 2000)

    Book  Google Scholar 

  12. W. Borutzky, Bond Graph Methodology—Development and Analysis of Multidisciplinary Dynamic System Models (Springer, Heidelberg, 2010)

    Google Scholar 

  13. W. Borutzky, B. Barnard, J. Thoma, Describing bond graph models of hydraulic components in Modelica. Math. Comput. Simul. 53, 381–387 (2000)

    Article  Google Scholar 

  14. W. Borutzky, B. Barnard, J. Thoma, An orifice flow model for laminar and turbulent conditions. Simul. Model. Pract. Theory 10, 141–152 (2002)

    Article  MATH  Google Scholar 

  15. N.M. Bou-Rabee, J.E. Marsden, L.A. Romero, Tippe top inversion as a dissipation-induced instability. SIAM J. Appl. Dyn. Syst. 3(3), 352–377 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Boukari, Piezoelectric actuators modeling for complex systems control. Ph.D. thesis, Arts et Mtiers ParisTech, 2010

    Google Scholar 

  17. A.F. Boukari, G. Moraru, J.C. Carmona, Malburet F, User-oriented simulation models of piezo-bar actuators: part I and part II, in Proceedings of IDETC/CIE 2009, ASME 2009 International Design Engineering Technical Conferences& International Conference on Mechatronic and Embedded Systems and Applications, San Diego, USA, 2009

    Google Scholar 

  18. T.A. Bowers, Modeling, simulation and control of a polypyrrole-based conducting polymer actuator. Master’s thesis, Arizona State University, 2004

    Google Scholar 

  19. P.C. Breedveld, An alternative model for static and dynamic friction in dynamic system simulation, in IFAC-Conference on Mechatronic Systems, vol. 2, pp. 717–722, 2000

    Google Scholar 

  20. M.D. Bryant, S. Lee, Resistive field bond graph models for hydrodynamically lubricated bearings. Proc. IMechE Part I: J. Syst. Control Eng. 218(8), 645–654 (2004)

    Article  Google Scholar 

  21. M. Calin, N. Chaillet, J. Agnus, A. Bourjault, Design of cooperative microrobots with impedance optimization, in IEEE International Conference on Intelligent Robots and Systems, pp. 1312–1317, 1997

    Google Scholar 

  22. R. Changhai, S. Lining, Hysteresis and creep compensation for piezoelectric actuator in open-loop operation. Sens. Actuator A 122, 124–130 (2005)

    Article  Google Scholar 

  23. C.J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, Oxford 1993)

    Google Scholar 

  24. R. Chhabra, M. Reza Emami, Holistic system modeling in mechatronics. Mechatronics 21(1), 166–175 (2011)

    Article  Google Scholar 

  25. L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18, 507–519 (1971)

    Article  Google Scholar 

  26. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  27. J. Compos, M. Crawford, R. Longoria, Rotordynamic modeling using bond graphs: modeling the jeffcott rotor. IEEE Trans. Magn. 41(1), 274–280 (2005)

    Article  Google Scholar 

  28. S.H. Crandall, The effect of damping on the stability of gyroscopic pendulums. Zeitschrift fur Angewandte Mathematik und Physik 46, S761–S780 (1995)

    MathSciNet  MATH  Google Scholar 

  29. D. Croft, G. Shed, S. Devasia, Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. ASME J. Dyn. Syst. Meas. Control 123, 3543 (2001)

    Article  Google Scholar 

  30. Y. Cui, R.X. Gao, D. Yang, D.O. Kazmer, A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor. Smart Struct. Syst. 3(1), 1–22 (2007)

    Google Scholar 

  31. V. Damic, Modelling flexible body systems: a bond graph component model approach. Math. Comput. Model. Dyn. Syst. 12(2–3), 175–187 (2006)

    Google Scholar 

  32. S.S. Dasgupta, A.K. Samantaray, R. Bhattacharyya, Stability of an internally damped non-ideal flexible spinning shaft. Int. J. Non-Linear Mech. 45(3), 286–293 (2010)

    Article  Google Scholar 

  33. M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), art. no. 5247127:1717–1724 (2009)

    Google Scholar 

  34. M. Di Ventra, Y.V. Pershin, L.O. Chua, Putting memory into circuit elements: memristors, memcapacitors, and meminductors. Proc. IEEE 97(8), art. no. 5109686:1371–1372 (2009)

    Google Scholar 

  35. M.F. Dimentberg, L. McGovern, R.L. Norton, J. Chapdelaine, R. Harrison, Dynamics of an unbalanced shaft interacting with a limited power supply. Nonlinear Dyn. 13, 171–187 (1997)

    Article  MATH  Google Scholar 

  36. P. Dupont, V. Hayward, B. Armstrong, F. Altpeter, Single state elasto-plastic friction models. IEEE Trans. Autom. Control 47(5), 187–192 (2002)

    Article  MathSciNet  Google Scholar 

  37. M. Eckert, The Sommerfeld effect: theory and history of a remarkable resonance phenomenon. Eur. J. Phys. 17(5), 285–289 (1996)

    Article  Google Scholar 

  38. J.W. Eischen, C. Chung, J.H. Kim, Realistic modeling of edge effect stresses in bimaterial elements. ASME J. Elect. Packag. 112, 16–23 (1990)

    Article  Google Scholar 

  39. J.J. Epps, I. Chopra, Comparative evaluation of shape memory alloy constitutive models with test data, in Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, vol. 2, pp. 1425–1437, 1997

    Google Scholar 

  40. T. Ersal, H.K. Fathy, J.L. Stein, Structural simplification of modular bond-graph models based on junction inactivity. Simul. Model. Pract. Theory 17(1), 175–196 (2009)

    Article  Google Scholar 

  41. J.D. Ertel, S.A. Mascaro, Dynamic thermomechanical modeling of a wet shape memory alloy actuator. J. Dyn. Syst. Meas. Control Trans. ASME 132(5), 1–9 (2010)

    Article  Google Scholar 

  42. B. Eryilmaz, B.H. Wilson, Unified modeling and analysis of a proportional valve. J. Franklin Inst. 343, 48–68 (2006)

    Article  MATH  Google Scholar 

  43. A.P. Filippov, Vibrations of Mechanical Systems (National Lending Library for Science and Technology, Boston Spa, Yorkshire, England, 1971)

    Google Scholar 

  44. L. Flemming, S. Mascaro, Wet SMA actuator array with matrix vasoconstriction device, in Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition, pp. 1751–1758, 2005

    Google Scholar 

  45. P. Flores, Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. P. Flores, J. Ambrosio, J.C. Pimenta Claro, H.M. Lankarani, Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies (Springer, Berlin, 2008)

    MATH  Google Scholar 

  47. A.M. Flynn, S.R. Sanders, Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers. IEEE Trans. Power Electr. 17(1), 8–14 (2002)

    Article  Google Scholar 

  48. R.X. Gao, Y. Cui, Vibration-based sensor powering for manufacturing process monitoring. Trans. North Am. Manuf. Res. Inst. SME 33, 335–342 (2005)

    Google Scholar 

  49. P.J. Gawthrop, B. Bhikkaji, S.O.R. Moheimani, Physical-model-based control of a piezoelectric tube for nano-scale positioning applications. Mechatronics 20, 74–84 (2010)

    Article  Google Scholar 

  50. G. Genta, Dynamics of Rotating Systems (Springer, Heidelberg, 2005)

    Google Scholar 

  51. P.J. Gilgunn, Large angle micro-mirror arrays in CMOS-MEMS. Master’s thesis, Carnegie Mellon University, 2006

    Google Scholar 

  52. M. Goldfarb, N. Celanovic, A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators. J. Dyn. Syst. Meas. Control Trans. ASME 119(3), 478–485 (1997)

    Article  MATH  Google Scholar 

  53. O. Gomis-Bellmunt, F. Ikhouane, P. Castell-Vilanova, J. Bergas-Jan, Modeling and validation of a piezoelectric actuator. Electron. Eng. 89, 629–638 (2007)

    Article  Google Scholar 

  54. B. Halder, A. Mukherjee, R. Karmakar, Theoretical and experimental studies on squeeze film stabilizers for flexible rotor-bearing systems using newtonian and viscoelastic lubricants. Trans. ASME J. Vib. Acoust. Stress Reliab. Des. 112(4), 473–482 (1990)

    Google Scholar 

  55. Y.-Y. He, S. Oi, F.-L. Chu, H.-X. Li, Vibration control of a rotor-bearing system using shape memory alloy: I. Theory. Smart Mater. Struct. 16(1), 114–121 (2007)

    Article  Google Scholar 

  56. Y.-Y. He, S. Oi, F.-L. Chu, H.-X. Li, Vibration control of a rotor-bearing system using shape memory alloy: II. Experimental study. Smart Mater. Struct. 16(1), 122–127 (2007)

    Article  Google Scholar 

  57. R. Holmes, The effect of sleeve bearings on the vibration of rotating shafts. Tribology 5(4), 161–168 (1972)

    Article  Google Scholar 

  58. L. Howald, H. Rudin, H.J. Guentherodt, Piezoelectric inertial stepping motor with spherical rotor. Rev. Sci. Instrum. 63(8), 3909–3912 (1992)

    Article  Google Scholar 

  59. D. Hrovat, J. Asgari, M. Fodor, in Automotive Mechatronic Systems, Mechatronic Systems Techniques and Applications: Transportation and Vehicular Systems, vol. 2 (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 1–98

    Google Scholar 

  60. M. Hubbard, Whirl dynamics of pendulous flywheels using bond graphs. J. Franklin Inst. 308(4), 505–521 (1979)

    Article  MathSciNet  Google Scholar 

  61. T. Ikeda, Fundamentals of Piezoelectricity (Oxford Science Publications, Oxford, 1996)

    Google Scholar 

  62. T. Ikeda, F.A. Nae, H. Naito, Y. Matsuzaki, Constitutive model of shape memory alloys for unidirectional loading considering inner hysteresis loops. Smart Mater. Struct. 13, 916–925 (2004)

    Article  Google Scholar 

  63. T. Iwatsubo, H. Kanki, R. Kawai, Vibration of asymmetric rotor through critical speed with limited power supply. J. Mech. Eng. Sci. 14(3), 184–194 (1972)

    Article  Google Scholar 

  64. D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control Trans. ASME 107(1), 100–103 (1985)

    Article  Google Scholar 

  65. D.C. Karnopp, D.L. Margolis, R.C. Rosenberg, System Dynamics: Modeling and Simulation of Mechatronic Systems (Wiley, New York, 2000)

    Google Scholar 

  66. D.C. Karnopp, Power-conserving transformations: physical interpretations and applications using bond graphs. J. Franklin Inst. 288(3), 175–201 (1969)

    Article  Google Scholar 

  67. D.C. Karnopp, D.L. Margolis, Analysis and simulation of planar mechanism systems using bond graphs. J. Mech. Des. 101, 187–191 (1979)

    Article  Google Scholar 

  68. S. Karunanidhi, M. Singaperumal, Mathematical modelling and experimental characterization of a high dynamic servo valve integrated with piezoelectric actuator. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 224(4), 419–435 (2010)

    Article  Google Scholar 

  69. O. Kavehei, A. Iqbal, Y.S. Kim, K. Eshraghian, S.F. Al-Sarawi, D. Abbott, The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc. R. Soc. A 466(2120), 2175–2202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. O.N. Kirillov, Destabilization paradox due to breaking the hamiltonian and reversible symmetry. Int. J. Non-Linear Mech. 42, 71–87 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Krems, Y.V. Pershin, M. Di Ventra, Ionic memcapacitive effects in nanopores. Nano Lett. 10(7), 2674–2678 (2010)

    Article  Google Scholar 

  72. V. Lampaert, Modelling and control of dry sliding friction in mechanical systems. Ph.D. thesis, Katholieke Universiteit Leuven, 2003

    Google Scholar 

  73. A. Lasia, Electrochemical Impedance Spectroscopy and Its Applications. Modern Aspects of Electrochemistry, vol. 32, chapter 2 (Kluwer Academic/Plenum Pub, New York, 1999), p. 143

    Google Scholar 

  74. D.E. Lee, Development of micropump for microfluidic applications. Ph.D. thesis, Louisiana State University, 2007

    Google Scholar 

  75. F.-S. Lee, T.J. Moon, G.Y. Masada, Extended bond graph reticulation of piezoelectric continua. J. Dyn. Sys. Meas. Control 117(1), 1–7 (1995)

    Google Scholar 

  76. A.W. Lees, S. Jana, D.J. Inman, M.P. Cartmell, The control of bearing stiffness using shape memory. in 4th International Symposium on Stability Control of Rotating Machinery (ISCORMA-4), Calgary, Alberta, Canada, 27–30 August 2007

    Google Scholar 

  77. C. Liang, C.A. Rogers, One dimensional thermomechanical constitutive relations for shape memory material. J. Intell. Mater. Struct. 1, 207–234 (1990)

    Article  Google Scholar 

  78. D.L. Margolis, G.E. Young, Reduction of models of large scale lumped structures using normal modes and bond graphs. J. Franklin Inst. 304(1), 65–79 (1977)

    Article  MATH  Google Scholar 

  79. D.L. Margolis, Bond graphs and the exploitation of power conserving transformations. Comput. Programs Biomed. 8(3–4), 165–170 (1978)

    Google Scholar 

  80. W. Marquis-favre, E. Bideaux, S. Scavarda, A planar mechanical library in the AMESIM simulation software. Part I: Formulation of dynamics equations. Simul. Model. Pract. Theory 14, 25–46 (2006)

    Article  Google Scholar 

  81. W. Marquis-favre, E. Bideaux, S. Scavarda, A planar mechanical library in the AMESIM simulation software. Part II: Library composition and illustrative example. Simul. Model. Pract. Theory 14, 95–111 (2006)

    Article  Google Scholar 

  82. K. Medjaher, A.K. Samantaray, B. Ould Bouamama, Bond graph model of a vertical U-tube steam condenser coupled with a heat exchanger. Simul. Model. Pract. Theory 17(1), 228–239 (2009)

    Article  Google Scholar 

  83. H.E. Merrit, Hydraulic Control Systems (Wiley, New York, 1967)

    Google Scholar 

  84. W. Moon, I.J. Busch-Vishniac, Finite element equivalent bond graph modeling with application to the piezoelectric thickness vibrator. J. Acoust. Soc. Am. 93, 3496–3506 (1993)

    Article  Google Scholar 

  85. W. Moon, I.J. Busch-Vishniac, Modeling of piezoelectric ceramic vibrators including thermal effects: Part III. Bond graph model for one dimensional heat conduction. J. Acoust. Soc. Am. 101, 1398–1407 (1997)

    Article  Google Scholar 

  86. W. Moon, I.J. Busch-Vishniac, Modeling of piezoelectric ceramic vibrators including thermal effects. Part IV: development and experimental evaluation of a bond graph model of the thickness vibrator. J. Acoust. Soc. Am. 101, 1408–1429 (1997)

    Article  Google Scholar 

  87. C. Morin, Z. Moumni, W. Zaki, A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int. J. Plast. 27, 748–767 (2011)

    Article  MATH  Google Scholar 

  88. C. Morin, Z. Moumni, W. Zaki, Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. Int. J. Plast. 27, 1959–1980 (2011)

    Article  MATH  Google Scholar 

  89. A. Mukherjee, Effect of bi-phase lubricants on dynamics of rigid rotors. Trans. ASME J. Lubr. Tech. 105, 29–38 (1983)

    Article  Google Scholar 

  90. A Mukherjee, R. Karmakar, Modelling and Simulation of Engineering Systems through Bond Graphs (Alpha Sciences International, Pangbourne, UK, 2000)

    Google Scholar 

  91. A. Mukherjee, R. Karmakar, A.K. Samantaray, Bond Graph in Modeling, Simulation and Fault Identification (CRC Press, Boca Raton, 2006) ISBN: 978-8188237968, 1420058657

    Google Scholar 

  92. A. Mukherjee, R. Karmakar, A.K. Samantaray, Modelling of basic induction motors and source loading in rotor-motor systems with regenerative force field. Simul. Pract. Theory 7(5), 563–576 (1999)

    Article  Google Scholar 

  93. A. Mukherjee, V. Rastogi, A. Dasgupta, Extension of lagrangian-hamiltonian mechanics for continuous systems-investigation of dynamics of a one-dimensional internally damped rotor driven through a dissipative coupling. Nonlinear Dyn. 58(1–2), 107–127 (2009)

    Google Scholar 

  94. A. Mukherjee, S. Sengupta, Active stabilization of rotors with circulating forces due to spinning dissipation. J. Vib. Control 17(10), 1509–1524 (2011)

    Article  MathSciNet  Google Scholar 

  95. J. Mullins, Memristor minds. New Sci. 4, 42–45 (2009)

    Google Scholar 

  96. K. Nagaya, S. Takeda, Y. Tsukui, T. Kumaido, Active control method for passing through critical speeds of rotating shafts by changing stiffnesses of the supports with use of memory metals. J. Sound Vib. 113(2), 307–315 (1987)

    Google Scholar 

  97. M. Nakhaeinejad, M.D. Bryant, Dynamic modeling of rolling element bearings with surface contact defects using bond graphs. J. Tribol. 133(1) art. no. 011102 (2011)

    Google Scholar 

  98. M. Nakhaeinejad, S. Lee, M.D. Bryant, Finite element bond graph model of rotors, in 2010 Spring Simulation Multiconference (SpringSim’10), art. no. 213 (2010)

    Google Scholar 

  99. A. Nayfeh, D. Mook, Nonlinear Oscillations (Wiley-Interscience, New York, 1979)

    MATH  Google Scholar 

  100. H. Olsson, K.J. Astrom, C. Canudas de Wit, M. Gaefvert, P. Lischinsky, Friction models and friction compensation. Eur. J. Control 4(3), 176–195 (1998)

    MATH  Google Scholar 

  101. G.F. Oster, D.M. Auslander, Memristor: a new bond graph element. Trans. ASME Dyn. Syst. Meas. Contr. 94(3), 249–252 (1972)

    Google Scholar 

  102. B. Ould Bouamama, Bond graph approach as analysis tool in thermofluid model library conception. J. Franklin Inst. 340(1), 1–23 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  103. B. Ould Bouamama, K. Medjaher, A.K. Samantaray, M. Staroswiecki, Supervision of an industrial steam generator. Part I: Bond graph modelling. Control Eng. Pract. 14(1), 71–83 (2005)

    Article  Google Scholar 

  104. D.A. Palmer, Modelling and control of suspensions as used in interferometric gravitational wave detectors. Ph.D. thesis, University of Glasgow, 2003

    Google Scholar 

  105. P.M. Pathak, A. Mukherjee, A. Dasgupta, Impedance control of space robots using passive degrees of freedom in controller domain. Trans. ASME: J. Dyn. Syst. Meas. Control 127(4), 564–578 (2005)

    Article  Google Scholar 

  106. H.M. Paynter, Analysis and design of Engineering Systems (M.I.T. Press, Cambridge, 1961)

    Google Scholar 

  107. E. Pedersen, Rotordynamics and bondgraphs: basic model. Math. Comput. Model. Dyn. Syst. 15(4), 337–352 (2009)

    Article  MathSciNet  Google Scholar 

  108. H. Prahlad, I. Chopra, Comparative evaluation of shape memory alloy constitutive models with experimental data. J. Int. Mater. Syst. Struct. 12(6), 383–395 (2001)

    Article  Google Scholar 

  109. A. Preumont, Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems (Springer, Heidelberg, 2006)

    Google Scholar 

  110. R.H. Rand, R.J. Kinsey, D.L. Mingori, Dynamics of spinup through resonance. Int. J. Non-Linear Mech. 27(3), 489–502 (1992)

    Article  MATH  Google Scholar 

  111. J.E.B. Randles, Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1, 11 (1947)

    Google Scholar 

  112. J.N. Reddy, Nonlinear Finite Element Analysis (Oxford University Press, Oxford, 2007)

    Google Scholar 

  113. T.A. Rich, Thermo-mechanics of bimetal. Gen. Electr. Rev. 37(2), 102–105 (1934)

    Google Scholar 

  114. J.M. Rodriguez-Fortun, J. Orus, F. Buil, J.A. Castellanos, General bond graph model for piezoelectric actuators and methodology for experimental identification. Mechatronics 20, 303–314 (2010)

    Article  Google Scholar 

  115. G. Romero, J. Felez, J. Maroto, M.L. Martinez, Kinematic analysis of mechanism by using bond-graph language, in Proceedings 20th European Conference on Modelling and Simulation, 2006

    Google Scholar 

  116. G. Romero, J. Felez, J. Maroto, J.M. Mera, Efficient simulation of mechanism kinematics using bond graphs. Simul. Model. Pract. Theory 17, 293–308 (2009)

    Article  Google Scholar 

  117. B. Samanta, A. Mukherjee, Analysis of acoustoelastic systems using modal bond graphs. Trans. ASME J. Dyn. Syst. Meas. Control 112(1), 108–115 (1990)

    Article  Google Scholar 

  118. A.K. Samantaray, K. Medjaher, B. Ould Bouamama, M. Staroswiecki, G. Dauphin-Tanguy, Component based modelling of thermo-fluid systems for sensor placement and fault detection. SIMULATION: Trans. Soc. Model. Simul. Int. 80(7–8), 381–398 (2004)

    Google Scholar 

  119. A.K. Samantaray, B. Ould Bouamama, Model-based Process Supervision—A Bond Graph Approach (Springer, London, 2008)

    Google Scholar 

  120. A.K. Samantaray, A note on internal damping induced self-excited vibration in a rotor by considering source loading of a DC motor drive. Int. J. Non-Linear Mech. 43(9), 1012–1017 (2008)

    Article  Google Scholar 

  121. A.K. Samantaray, On the non-linear phenomena due to source loading in rotor-motor systems. Proc. IMechE Part-C: J. Mech. Eng. Sci. 223(4), 809–818 (2009)

    Google Scholar 

  122. A.K. Samantaray, Steady state dynamics of a non-ideal rotor with internal damping and gyroscopic effects. Nonlinear Dyn. 56(4), 443–451 (2009)

    Article  MATH  Google Scholar 

  123. A.K. Samantaray, R. Bhattacharyya, A. Mukherjee, An investigation into the physics behind the stabilizing effects of two-phase lubricants in journal bearings. J. Vib. Control 12(4), 425–442 (2006)

    Article  MATH  Google Scholar 

  124. A.K. Samantaray, R. Bhattacharyya, A. Mukherjee, On the stability of Crandall gyropendulum. Phys. Lett. A 372, 238–243 (2008)

    Article  MATH  Google Scholar 

  125. A.K. Samantaray, S.S. Dasgupta, R. Bhattacharyya, Bond graph modeling of an internally damped nonideal flexible spinning shaft. J. Dyn. Syst. Meas. Control Trans. ASME 132(6), art. no. 061502 (2010)

    Google Scholar 

  126. A.K. Samantaray, S.S. Dasgupta, R. Bhattacharyya, Sommerfeld effect in rotationally symmetric planar dynamical systems. Int. J. Eng. Sci. 48(1), 21–36 (2010)

    Article  Google Scholar 

  127. A.K. Samantaray, A. Mukherjee, R. Bhattacharyya, Some studies on rotors with polynomial type non-linear external and internal damping. Int. J. Non-Linear Mech. 41(9), 1007–1015 (2006)

    Article  MATH  Google Scholar 

  128. M. Schepers, Modeling a piezoelectric inertial stepping turntable using bond graphs. Master’s thesis, University of Twente, 2004

    Google Scholar 

  129. W. Schiehlen, Multibody Systems Handbook (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  130. D.J. Segalman, G.G. Parker, D.J. Inman, in Vibration Suppression by Modulation of Elastic Modulus Using Shape Memory Alloy. ed. by M. Shahinpoor, H.S. Tzou. Intelligent Structures, Materials and Vibration, vol. 58, pp. 1–5. ASME, 1993

    Google Scholar 

  131. A. Sommerfeld, Beitrge zum dynamischen ausbau der festigkeitslehe. Physikal Zeitschr 3, 266–286 (1902)

    MATH  Google Scholar 

  132. J.S. Stecki, Bond graph modelling of power transmission by torque converting mechanisms. J. Franklin Inst. 311(2), 93–110 (1981)

    Article  Google Scholar 

  133. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  134. Y. Sugiyama, M.A. Langthjem, Physical mechanism of the destabilizing effect of damping in continuous non-conservative dissipative systems. Int. J. Non-Linear Mech. 42, 132–145 (2007)

    Article  Google Scholar 

  135. E. Suhir, Predictive analytical thermal stress modeling in electronics and photonics. Appl. Mech. Rev. 62, 040801 (2009)

    Google Scholar 

  136. K. Tanaka, A thermomechanical sketch of shape memory effect; one dimensional tensile behavior. Res. Mech. 18, 251–263 (1986)

    Google Scholar 

  137. J.U Thoma, B. Ould Bouamama, Modelling and Simulation in Thermal and Chemical Engineering. Bond Graph Approach (Springer, Telos, 2000)

    Google Scholar 

  138. W.T. Thomson, M.D. Dahleh, Theory of Vibration with Applications (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  139. Q. Tian, Y. Zhang, L. Chen, J. Yang, Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  140. S. Timoshenko, Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11(3), 233–255 (1925)

    Article  Google Scholar 

  141. S. Timoshenko, Vibration Problems in Engineering (Van Nostrand, Princeton, 1961)

    Google Scholar 

  142. S.T. Todd, A. Jain, H. Xie, A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators. J. Opt. A: Pure Appl. Opt. 8, S352–S359 (2006)

    Article  Google Scholar 

  143. S.T. Todd, Electrothermomechanical modeling of a 1-D electrothermal MEMS micromirror. Master’s thesis, University of Florida, 2005

    Google Scholar 

  144. A. Tonoli, N. Amati, Dynamic modeling and experimental validation of eddy current dampers and couplers. J. Vib. Acoust. 130 article no. 021011, 1–9 (2008)

    Google Scholar 

  145. N. Vahdati, S. Heidari, Bond graph model of a multi-layer piezoelectric (pzt) beam and its application in semi-active hydraulic mounts, in ASME 2009 Dynamic Systems and Control Conference (DSCC2009), Paper no. DSCC2009-2786, pp. 347–354, Hollywood, California, USA, 12–14 October 2009

    Google Scholar 

  146. Z. Viderman, I. Porat, An optimal-control method for passage of a flexible rotor through resonances. Trans. ASME J. Dyn. Syst. Meas. Control 109(3), 216–223 (1987)

    Article  MATH  Google Scholar 

  147. D. Vischer, H. Bleuler, Self-sensing active magnetic levitation. IEEE Trans. Magn. 29(2), 1276–1281 (1993)

    Article  Google Scholar 

  148. W. Wang, D. Shin, C. Han, H. Choi, Modeling and simulation for dual stage system using bond graph theory, in ISOT 2009—International Symposium on Optomechatronic Technologies, art. no. 5326087, pp. 197–202, 2009

    Google Scholar 

  149. T.M. Wasfy, A.K. Noor, Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

    Google Scholar 

  150. M. Wassink, R. Carloni, S. Stramigioli, Port-hamiltonian analysis of a novel robotic finger concept for minimal actuation variable impedance grasping, in Proceedings—IEEE International Conference on Robotics and Automation, number art. 5509871, 771–776 (2010)

    Google Scholar 

  151. J. Wauer, S. Suherman, Vibration suppression of rotating shafts passing through resonances by switching shaft stiffness. J. Vib. Acoust. 120, 170–180 (1997)

    Article  Google Scholar 

  152. Y. Xing, E. Pedersen, T. Moan, An inertia-capacitance beam substructure formulation based on the bond graph method with application to rotating beams. J. Sound Vib. 330(21), 5114–5130 (2011)

    Article  Google Scholar 

  153. T.-J. Yeh, Y.-J. Chung, W.-C. Wu, Sliding control of magnetic bearing systems. J. Dyn. Syst. Meas. Control 123, 353–362 (2001)

    Google Scholar 

  154. T.-J. Yeh, H. Ruo-Feng, L. Shin-Wen, An integrated physical model that characterizes creep and hysteresis in piezoelectric actuators. Simul. Model. Pract. Theory 16(1), 93–110 (2008)

    Article  Google Scholar 

  155. A.J. Zak, M.P. Cartmell, W.M. Ostachowicz, Dynamics and control of a rotor using and integrated SMA/composite active bearing actuator, in 5th International Conference on Damage Assessment of Structures, pp. 233–240, University of Southampton, UK, 2003

    Google Scholar 

  156. W. Zaki, Z. Moumni, A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55, 2455–2490 (2007)

    Article  MATH  Google Scholar 

  157. A. Zeid, C.H. Chung, Bond graph modeling of multibody systems: a library of three-dimensional joints. J. Franklin Inst. 329(4), 605–636 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochdi Merzouki .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Merzouki, R., Samantaray, A.K., Pathak, P.M., Ould Bouamama, B. (2013). Rigid Body, Flexible Body, and Micro Electromechanical Systems. In: Intelligent Mechatronic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-4628-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4628-5_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4627-8

  • Online ISBN: 978-1-4471-4628-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics