Skip to main content

Physical Model-Based Control

  • Chapter
  • First Online:
Intelligent Mechatronic Systems

Abstract

Classical control system analysis methods are revisited in this chapter. Initially, a methodical approach for conversion of bond graph models into state-space, signal flow graph, and block diagram models is illustrated. The next step deals with derivation of transfer functions and control theoretic analysis of closed-loop linear time invariant systems. The structural control properties (controllability, observability, zero dynamics, relative degree, infinite zeros, etc.) of the system are then derived by graphically analyzing the bond graph model structure under various causal forms. The concept of bicausality, which is very useful in system inversion and structural property evaluation, is formally introduced. This is followed by a basic introduction to discrete-time state-space models. Finally, actuator sizing for control system synthesis has been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.S. Bay, Fundamentals of Linear State Space Systems (McGraw-Hill, Boston, 1999)

    Google Scholar 

  2. F.T. Brown, Direct application of loop rule to bond graphs. J. Dyn. Syst. Meas. Control Trans. ASME 94(3), 253–261 (1972)

    Article  Google Scholar 

  3. R. Cacho, J. Felez, C. Vera, Deriving simulation models from bond graphs with algebraic loops: the extension to multibond graph systems. J. Frankl. Inst. 337(5), 579–600 (2000)

    Article  MATH  Google Scholar 

  4. G. Dauphin-Tanguy, Les Bond Graphs (Hermès Science, Paris, 2000)

    Google Scholar 

  5. G. Dauphin-Tanguy, A. Rahmani, C. Sueur, Bond graph aided design of controlled systems. Simul. Pract. Theory 7(5–6), 493–513 (1999)

    Google Scholar 

  6. P.J. Gawthrop, Physical interpretation of inverse dynamics using bicausal bond graphs. J. Frankl. Inst. 337(6), 743–769 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. S.Y. Huang, K. Youcef-Toumi, Zero dynamics of physical systems from bond graph models—part I: SISO systems. J. Dyn. Syst. Meas. Control Trans. ASME 121(1), 10–16 (1999)

    Article  Google Scholar 

  8. S.Y. Huang, K. Youcef-Toumi, Zero dynamics of physical systems from bond graph models—part II: MIMO systems. J. Dyn. Syst. Meas. Control Trans. ASME 121(1), 18–26 (1999)

    Article  Google Scholar 

  9. T. Kailath, Linear Systems (Prentice-Hall, Englewood Cliffs, 1980)

    MATH  Google Scholar 

  10. J.D. Lamb, G.M. Asher, D.R. Woodall, Causal loops and Mason’s rule for bond graphs, in Proceedings of ICBGM’ 93, Simulation series, vol. 25(2) (SCS publication, 1993), pp. 67–72, ISBN:1-56555-019-6

    Google Scholar 

  11. C.T. Lin, Structural controllability. IEEE Trans. Autom. Control AC-19, 201–208 (1974)

    Google Scholar 

  12. A. Mukherjee, R. Karmakar, A.K. Samantaray, Bond Graph in Modeling, Simulation and Fault Identification (CRC Press, Boca Raton, 2006), ISBN: 978-8188237968, 1420058657

    Google Scholar 

  13. R.F. Ngwompo, P.J. Gawthrop, Bond graph-based simulation of non-linear inverse systems using physical performance specifications. J. Frankl. Inst. 336(8), 1225–1247 (1999)

    Article  MATH  Google Scholar 

  14. R.F. Ngwompo, S. Scavarda, Dimensioning problems in system design using bicausal bond graphs. Simul. Pract. Theory 7, 577–587 (1999)

    Article  Google Scholar 

  15. R.F. Ngwompo, S. Scavarda, D. Thomasset, Inversion of linear time-invariant SISO systems modelled by bond graph. J. Frankl. Inst. 333(2), 157–174 (1996)

    Article  MathSciNet  Google Scholar 

  16. R.F. Ngwompo, S. Scavarda, D. Thomasset, Physical model-based inversion in control systems design using bond graph representation—part 1: theory. Proc. IMechE Part I J. Syst. Control Eng. 215, 95–103 (2001)

    Article  Google Scholar 

  17. R.F. Ngwompo, S. Scavarda, D. Thomasset, Physical model-based inversion in control systems design using bond graph representation—part 2: applications. Proc. IMechE Part I J. Syst. Control Eng. 215, 105–112 (2001)

    Article  Google Scholar 

  18. J. OReilly, Observers for Linear Systems (Academic press, New York, 1983)

    Google Scholar 

  19. A. Rahmani, C. Sueur, G. Dauphin-Tanguy, Approche des bond graphs pour l’analyse structurelle des systèmes linéaires. Linear Algebra Appl. 259, 101–131 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. A.K. Samantaray, B. Ould Bouamama, Model-Based Process Supervision—A Bond Graph Approach (Springer, London, 2008)

    Google Scholar 

  21. R.N. Shields, J.B. Pearson, Structural controllability of multi-input linear systems. IEEE Trans. Autom. Control AC-21(2), 203–212 (1976)

    Google Scholar 

  22. C. Sueur, G. Dauphin-Tanguy, Structural controllability/observability of linear systems represented by bond graphs. J. Frankl. Inst. 326(6), 869–883 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Sueur, G. Dauphin-Tanguy, Bond graph approach for structural analysis of MIMO linear systems. J. Frankl. Inst. 328(1), 55–70 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Sueur, G. Dauphin-Tanguy, Controllability indices for structured systems. Linear Algebra Appl. 250, 275–287 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Van Dijk, P.C. Breedveld, Simulation of system models containing zero-order causal paths-I. classification of zero-order paths. J. Frankl. Inst. 328, 959–979 (1991)

    Article  MATH  Google Scholar 

  26. J. Van Dijk, P.C. Breedveld, Simulation of system models containing zero-order causal paths-II. Numerical implications of class 1 zero-order paths. J. Frankl. Inst. 328, 981–1004 (1991)

    Article  MATH  Google Scholar 

  27. S.T. Wu, K. Youcef-Toumi, On relative degrees and zero dynamics from physical system modeling. J. Dyn. Syst. Meas. Control Trans. ASME 117(2), 205–217 (1995)

    Article  MATH  Google Scholar 

  28. X. Zhang, Modeling, Control, Fault Detection and Isolation of Chemical Processes using a Bond Graph Framework. Ph.D. Thesis, Texas Tech University, 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochdi Merzouki .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Merzouki, R., Samantaray, A.K., Pathak, P.M., Ould Bouamama, B. (2013). Physical Model-Based Control. In: Intelligent Mechatronic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-4628-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4628-5_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4627-8

  • Online ISBN: 978-1-4471-4628-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics