Skip to main content

Intelligent Transportation Systems

  • Chapter
  • First Online:
Intelligent Mechatronic Systems

Abstract

This chapter deals with a class of intelligent transportation systems (ITS), namely intelligent autonomous vehicle (IAV). This chapter focuses on dynamic and kinematic models of an over-actuated electric vehicle. The studied model is nonlinear and can be used for control design in the case of trajectory tracking in normal situation, or for fault diagnosis and fault tolerant control in the case of faulty situation. A technique of nonlinear observation is also developed, allowing the online reconstruction of some unknown states and identification of system parameters. Bond graph approach is used for modeling, monitoring, and controlling the IAV. Simulation and experimental results are given for each section, in order to enhance the theoretical developments. Furthermore, modeling of a train of vehicles with the ‘Platoon’ configuration is studied in the last section. A graphical and functional model is presented to represent the different modes of operation of the platoon of IAVs and to obtain the reconfiguration scenarios under different fault conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Chen, R.J. Patton, Z. Chen, An LMI approach to fault-tolerant control of uncertain systems, in IEEE ISIC/CIRA/ISAS Joint Conference, 1998

    Google Scholar 

  2. J. Davila, F. Fridman, Observation and identification of mechanical systems via second order sliding modes, in Proceedings of the 8th International Workshop on Variable, Structure, 2004

    Google Scholar 

  3. M.A. Djeziri, R. Merzouki, B. Ould-Bouamama, G. Dauphin-Tanguy, Robust fault diagnosis using bond graph approach. IEEE/ASME Trans. Mechatron. 12(6), 599–611 (2007)

    Article  Google Scholar 

  4. M.A. Djeziri, B. Ould-Bouamama, R. Merzouki, G. Dauphin-Tanguy, Bond graph model based for robust fault diagnosis, in American Control Conference, ACC’2007, pp. 3017–3022, New York, 2007

    Google Scholar 

  5. J.S. Eterno, J.L. Weiss, D.P. Looze, A. Willsky, Design issues for fault tolerant-restructurable aircraft control, in Proceedings of the 24th Conference on Decision and Control, pp. 900–905, 1985

    Google Scholar 

  6. ETSI, www.etsi.org, The European Telecommunications Standards Institute, 2010

  7. Gottwald, www.gottwald.com, Gottwald port terminal website, 2010

  8. C.S. Hsieh, Performance gain margins of the two-state LQ reliable control. Automatica 38, 1985–1990 (2002)

    Article  MATH  Google Scholar 

  9. InTraDE, www.intrade-nwe.eu, website of INTERREG project InTraDE 09–13, 2010

  10. R. Isermann, Supervision, fault detection and fault diagnosis methods—an introduction. Control Eng. Pract. 5(5), 639–652 (1997)

    Article  Google Scholar 

  11. D.C. Karnopp, An approach to derivative causality in bond graph models of mechanical systems. J. Frankl. Inst. 329, 65–75 (1992)

    Article  MathSciNet  Google Scholar 

  12. W. Khalil, R. Merzouki, B. Ould-Bouamama, Dynamic modelling of a train of intelligent vehicles inside a confined space, in 12th IFAC Symposium on Control in Transportation, Redondo Beach, pp. 619–626, 2009

    Google Scholar 

  13. A. Khelassi, D. Theilliol, P. Weber, Reconfigurability analysis for reliable fault-tolerant control design, in 7th Workshop on Advanced Control and Diagnosis, ACD’2009, Zielona Gora, 2009

    Google Scholar 

  14. U. Kiencke, L. Nielsen, Automotive Control Systems: For Engine Driveline and Vehicle (Springer, Berlin, 2000)

    Google Scholar 

  15. A. Levant, Robust exact differentiation via sliding mode technique. Automatica 34, 379–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Y.W. Liang, D.C. Liaw, T.C. Lee, Reliable control of nonlinear systems. IEEE Trans. Autom. Control 45, 706–710 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Liao, J.L. Wang, G.H. Yang, Reliable robust flight tracking control: an LMI approach. IEEE Control Syst. Mag. 10, 76–89 (2002)

    Google Scholar 

  18. J.R. Loureiro, Fault tolerant control based on graphical approach: application to intelligent transportation systems. Scientific report, LAGIS-FRE CNRS 3303, 2010

    Google Scholar 

  19. R. Merzouki, J.C. Cadiou, Estimation of backlash phenomenon in the electromechanical actuator. Control Eng. Pract. 13, 973–983 (2005)

    Article  Google Scholar 

  20. R. Merzouki, J.C. Cadiou, N.K. MSirdi, Compensation of friction and backlash effects in an electrical actuator. J. Syst. Control Eng. 218, 75–84 (2004)

    Google Scholar 

  21. R. Merzouki, J.A. Davila Montoya, L.M. Fridman, J.C. Cadiou, Backlash phenomenon observation and identification in electromechanical system. Control Eng. Pract. 15, 447–457 (2007)

    Article  Google Scholar 

  22. R. Merzouki, B. Ould-Bouamama, M.A. Djeziri, M. Bouteldja, Modelling and estimation for tire-road system using bond graph approach. Mechatronics 17, 93–108 (2007)

    Article  Google Scholar 

  23. Michelin, Tire encyclopedia, in Sociètè de Technologie Michelin, 2001

    Google Scholar 

  24. T. Miksch, A. Gambier, E. Badreddin, Real-time performance comparison of fault-tolerant controllers, in IEEE Multi-Conference on Systems and Control, San Antonio, 2008

    Google Scholar 

  25. M. Mizuno, Development of tire side force model based on magic formula with the influence of tire surface temperature. R&D Rev. Toyota CRDL 38, 17 (2003)

    Google Scholar 

  26. M. Mizuno, T. Takahashi, M. Hada, Magic formula tire model using the measured data of a vehicle running on actual road, in AVEC’98, Nagoya, 1998

    Google Scholar 

  27. A. Mukherjee, R. Karmakar, Modelling and Simulation of Engineering Systems Through Bond Graphs (Alpha Sciences International, Pangbourne, 2000)

    Google Scholar 

  28. A. Mukherjee, A.K. Samantaray, System modelling through bond graph objects on SYMBOLS 2000, in International Conference on Bond Graph Modeling and Simulation (ICBGM’01), vol. 33, no. 1, pp. 164–170. Simulation Series, 2001. ISBN 1-56555-103-6

    Google Scholar 

  29. H. Niemann, J. Stoustrup, Passive fault tolerant control of a double inverted pendulum—a case study. Control Eng. Pract. 13, 1047–1059 (2005)

    Article  Google Scholar 

  30. Numexia, Numexia: www.numexia.com, Official website of Numexia, 2010

  31. B. Ould Bouamama, A.K. Samantaray, M. Staroswiecki, G. Dauphin-Tanguy, Derivation of constraint relations from bond graph models for fault detection and isolation, in International Conference on Bond Graph Modeling and Simulation (ICBGM’03), pp. 104–109. Simulation Series, vol. 35, no. 2, 2003. ISBN 1-56555-257-1

    Google Scholar 

  32. R.J. Patton, Fault-tolerant control system, in Proceedings of the 3rd IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, pp. 1033–1055, 1997

    Google Scholar 

  33. Robosoft, Robosoft: www.robosoft.fr, Official website of Robosoft, 2010

  34. A.K. Samantaray, K. Medjaher, B. Ould Bouamama, M. Staroswiecki, G. Dauphin-Tanguy, Component based modelling of thermo-fluid systems for sensor placement and fault detection. SIMULATION Trans. Soc. Model. Simul. Int. 80(7–8), 381–398 (2004)

    Google Scholar 

  35. A.K. Samantaray, K. Medjaher, B. Ould Bouamama, M. Staroswiecki, G. Dauphin-Tanguy, Diagnostic bond graphs for online fault detection and isolation. Simul. Model. Pract. Theory 14(3), 237–262 (2005)

    Article  Google Scholar 

  36. Scaner-OKTAL, Scaner driving simulation engine (2012), http://www.scanersimulation.com/, Accessed 3 March 2012

  37. D.J. Schuring, W. Pelz, M.G. Pottinger, A Model for Combined Tire Cornering and Braking Forces (SAE International, Warrendale, 1996), pp. 113–125

    Google Scholar 

  38. B. Siciliano, O. Khatib, Handbook of Robotics (Springer, New York, 2008). ISBN 978-3-540-23957-4,

    Google Scholar 

  39. C. Sié Kam, Les Bond Graphs pour la Modèlisation des Systèmes Linèaires Incertains. Ph.D. thesis, Ecole Centrale de Lille and USTL, Lille, 2001

    Google Scholar 

  40. T. Soderstrom, P. Stoica, System Identification (Prentice Hall International, Hemel Hempstead, 1989)

    Google Scholar 

  41. G. Spinnler, Conception des machines. Presses Polytechniques et Universitaires Romandes, 1997

    Google Scholar 

  42. M. Staroswiecki, On reconfigurability with respect to actuator failures, in Proceeding of 15th Triennial World Congress, Barcelona, 2002

    Google Scholar 

  43. M. Staroswiecki, G. Comtet-Varga, Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems. Automatica 37, 687–699 (2001)

    MathSciNet  MATH  Google Scholar 

  44. C. Sueur, G. Dauphin-Tanguy, Structural controllability/observability of linear systems represented by bond graphs. J. Frankl. Inst. 326(6), 869–883 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. TTS Group, www.ttsgroup.com/Products/AGV/, AGV for Container Terminals: TTS Group ASA, 2010

  46. V. Utkin, J. Guldner, J. Shi, Sliding Mode Control in Electromechanical Systems (Taylor& Francis, London, 1999)

    Google Scholar 

  47. R.J. Veillete, Reliable linear-quadratic state-feedback control. Automatica 31, 137–143 (1995)

    Article  Google Scholar 

  48. R.J. Veillete, J.V. Medanic, W.R. Perkins, Design of reliable control systems. IEEE Trans. Autom. Control 37, 290–304 (1992)

    Article  Google Scholar 

  49. J.Y. Wong, Theory of Ground Vehicle (Wiley, New York, 2001)

    Google Scholar 

  50. N.E. Wu, K. Zhou, G. Salomon, Control reconfigurability of linear time-invariant systems. Automatica 36, 1767–1771 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. G.H. Yang, J.L. Wang, Y.C. Soh, Reliable LQG control with sensor failures, in Proceeding of the 38th Conference on Decision and Control, Phoenix, 1999

    Google Scholar 

  52. G.H. Yang, J. L. Wang, Y.C. Soh, Reliable H-inf controller design for linear systems. Automatica 37, 717–725 (2001)

    Google Scholar 

  53. Z. Yang, Reconfigurability analysis for a class of linear hybrid systems, in Proceedings of 6th IFAC Safeprocess, Beijing, 2006

    Google Scholar 

  54. J.S. Yee, G.H. Yang, J.L. Wang, Reliable output-feedback controller design for discrete-time linear systems: an iterative LMI approach, in Proceedings of the American Control Conference, Arlington, 2001

    Google Scholar 

  55. Y. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems. Ann. Rev. Control 32, 229–252 (2008)

    Article  Google Scholar 

  56. Q. Zhao, J. Jiang, Reliable control system design against feedback failures with applications to aircraft control, in Proceedings of the 1996 IEEE International Conference on Control Aplications, Dearborn, 1996

    Google Scholar 

  57. Q. Zhao, J. Jiang, Reliable tracking control systems design against actuator failures, in Proceedings SICE Conference, Tokushima, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochdi Merzouki .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Merzouki, R., Samantaray, A.K., Pathak, P.M., Ould Bouamama, B. (2013). Intelligent Transportation Systems. In: Intelligent Mechatronic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-4628-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4628-5_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4627-8

  • Online ISBN: 978-1-4471-4628-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics