Skip to main content

Abstract

This chapter discusses the limits of the classical robustness paradigm and set the motivation and ground for the probabilistic approach to analysis and design. In particular, it introduces the notions of complexity, decidability, conservatism and discontinuity problems, with specific emphasis on NP-hard problems arising in the context of control systems, illustrated by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation O(⋅) means the following: for functions f,g:ℝ+→ℝ+, we write f(n)=O(g(n)) if there exist positive numbers n 0 and c such that f(n)≤cg(n) for all nn 0.

  2. 2.

    The frequently used terminology “curse of dimensionality” has been coined by Bellman in 1957 in his classical book on dynamic programming [49].

References

  1. Aho AV, Hopcroft JE, Ullman JD (1974) The design and analysis of computer algorithms. Addison-Wesley, Reading

    MATH  Google Scholar 

  2. Anderson BDO, Bose NK, Jury EI (1975) Output feedback stabilization and related problems—solution via decision methods. IEEE Trans Autom Control 20:53–66

    Article  MathSciNet  MATH  Google Scholar 

  3. Balakrishnan V, Boyd S, Balemi S (1992) Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems. Int J Robust Nonlinear Control 1:295–317

    Article  Google Scholar 

  4. Barmish BR (1994) New tools for robustness of linear systems. MacMillan, New York

    MATH  Google Scholar 

  5. Barmish BR, Khargonekar PP, Shi Z, Tempo R (1990) Robustness margin need not be a continuous function of the problem data. Syst Control Lett 15:91–98

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  7. Blondel VD, Tsitsiklis JN (2000) A survey of computational complexity results in systems and control. Automatica 36:1249–1274

    Article  MathSciNet  MATH  Google Scholar 

  8. Braatz RP, Young PM, Doyle JC, Morari M (1994) Computational complexity of μ calculation. IEEE Trans Autom Control 39:1000–1002

    Article  MathSciNet  MATH  Google Scholar 

  9. Cook SA (1971) The complexity of theorem proving procedures. In: Proceedings of the ACM symposium on theory of computing, pp 117–128

    Google Scholar 

  10. Coxson GE, De Marco CL (1994) The computational complexity of approximating the minimal perturbation scaling to achieve instability in an interval matrix. Math Control Signals Syst 7:279–291

    Article  MATH  Google Scholar 

  11. Dabbene F, Polyak BT, Tempo R (2007) On the complete instability of interval polynomials. Syst Control Lett 56(6):431–4381

    Article  MathSciNet  MATH  Google Scholar 

  12. Davis M (1973) Hilbert’s tenth problem is unsolvable. Math Mon 80:233–269

    Article  MATH  Google Scholar 

  13. De Gaston R, Safonov MG (1988) Exact calculation of the multiloop stability margin. IEEE Trans Autom Control 33:156–171

    Article  MATH  Google Scholar 

  14. Demmel JW (1992) The component-wise distance to the nearest singular matrix. SIAM J Matrix Anal Appl 13:10–19

    Article  MathSciNet  MATH  Google Scholar 

  15. Dorato P, Famularo D, Abdallah CT, Yang W (1999) Robust nonlinear feedback design via quantifier elimination theory. Int J Robust Nonlinear Control 9:817–822

    Article  MathSciNet  MATH  Google Scholar 

  16. Dorato P, Kun L, Kosmatopoulos EB, Ioannou PA, Ryaciotaki-Boussalis H (2000) Quantified multivariate polynomial inequalities. The mathematics of practical control design problems. IEEE Control Syst Mag 20:48–58

    Article  Google Scholar 

  17. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York

    MATH  Google Scholar 

  18. Goh K-C, Safonov MG, Ly JH (1996) Robust synthesis via bilinear matrix inequalities. Int J Robust Nonlinear Control 6:1079–1095

    Article  MathSciNet  MATH  Google Scholar 

  19. Matiyasevich Y (1970) Enumerable sets are diophantine. Dokl Akad Nauk SSSR 191:279–282 (in Russian)

    MathSciNet  Google Scholar 

  20. Mitzenmacher M, Upfal E (2005) Probability and computing: randomized algorithms and probabilistic analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  21. Nemirovski A (1993) Several NP-hard problems arising in robust stability analysis. Math Control Signals Syst 6:99–105

    Article  Google Scholar 

  22. Newlin MP, Young PM (1997) Mixed μ problems and branch and bound techniques. Int J Robust Nonlinear Control 7:145–164

    Article  MathSciNet  MATH  Google Scholar 

  23. Pace IS, Barnett S (1973) Numerical comparison of root-location algorithms for constant linear systems. In: Bell DJ (ed) Recent mathematical developments in control. Academic Press, London, pp 373–392

    Google Scholar 

  24. Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Reading

    MATH  Google Scholar 

  25. Poljak S, Rohn J (1993) Checking robust nonsingularity is NP-hard. Math Control Signals Syst 6:1–9

    Article  MathSciNet  MATH  Google Scholar 

  26. Schrijver A (1998) Theory of linear and integer programming. Wiley, New York

    MATH  Google Scholar 

  27. Seidenberg A (1954) A new decision method for elementary algebra. Ann Math 60:365–374

    Article  MathSciNet  MATH  Google Scholar 

  28. Tarski A (1951) A decision method for elementary algebra and geometry. University of California Press, Berkeley

    MATH  Google Scholar 

  29. Toker O (1998) On the complexity of purely complex μ computation and related problems in multidimensional systems. IEEE Trans Autom Control 43:409–414

    Article  MathSciNet  MATH  Google Scholar 

  30. Traub JF, Wasilkowski GW, Woźniakowski H (1988) Information-based complexity. Academic Press, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tempo, R., Calafiore, G., Dabbene, F. (2013). Limits of the Robustness Paradigm. In: Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4610-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4610-0_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4609-4

  • Online ISBN: 978-1-4471-4610-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics