Skip to main content

Abstract

In Chap. 9 we provided an overview of some key results of statistical learning theory. In this chapter we discuss their specific application to the design of systems affected by uncertainty formulating a learning-based approach. In particular, we develop a randomized technique for solving a nonconvex semi-infinite optimization problem and compute the related sample complexity. A sequential algorithm which provides a solution to the same problem is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We recall that bounds on the VC dimension have been computed for various control problems. For example, in [408], the VC dimension for static output feedback is given by \(2 n_{i} n_{o} \log_{2} [2 \mathrm{e}n_{s}^{2} (n_{s}+1)]\).

References

  1. Alamo T, Tempo R, Camacho EF (2009) A randomized strategy for probabilistic solutions of uncertain feasibility and optimization problems. IEEE Trans Autom Control 54:2545–2559

    Article  MathSciNet  Google Scholar 

  2. Alamo T, Tempo R, Ramirez DR, Camacho EF (2008) A new vertex result for robustness problems with interval matrix uncertainty. Syst Control Lett 57:474–481

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson BDO, Moore JB (1990) Optimal control: linear quadratic methods. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  4. Başar T, Olsder GJ (1999) Dynamic noncooperative game theory. SIAM, Philadelphia

    MATH  Google Scholar 

  5. Calafiore G (2010) Random convex programs. SIAM J Optim 20(6):3427–3464

    Article  MathSciNet  MATH  Google Scholar 

  6. Calafiore G, Dabbene F (2008) A reduced vertex set result for interval semidefinite optimization problems. J Optim Theory Appl 139:17–33

    Article  MathSciNet  MATH  Google Scholar 

  7. El Ghaoui L, Oustry F, AitRami M (1997) A cone complementary linearization algorithm for static output-feedback and related problems. IEEE Trans Autom Control 42:1171–1176

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujisaki Y, Kozawa Y (2006) Probabilistic robust controller design: probable near minmax value and randomized algorithms. In: Calafiore G, Dabbene F (eds) Probabilistic and randomized methods for design under uncertainty. Springer, London, pp 317–329

    Chapter  Google Scholar 

  9. Koltchinskii V, Abdallah CT, Ariola M, Dorato P (2001) Statistical learning control of uncertain systems: theory and algorithms. Appl Comput Math 120:31–43

    Article  MathSciNet  MATH  Google Scholar 

  10. Koltchinskii V, Abdallah CT, Ariola M, Dorato P, Panchenko D (2000) Improved sample complexity estimates for statistical learning control of uncertain systems. IEEE Trans Autom Control 46:2383–2388

    Article  MathSciNet  Google Scholar 

  11. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  12. Vidyasagar M (1998) Statistical learning theory and randomized algorithms for control. IEEE Control Syst Mag 18:69–85

    Article  Google Scholar 

  13. Vidyasagar M (2001) Randomized algorithms for robust controller synthesis using statistical learning theory. Automatica 37:1515–1528

    Article  MathSciNet  MATH  Google Scholar 

  14. Vidyasagar M (2002) Learning and generalization: with applications to neural networks, 2nd edn. Springer, New York

    Google Scholar 

  15. Vidyasagar M, Blondel V (2001) Probabilistic solutions to some NP-hard matrix problems. Automatica 37:1397–1405

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Tempo, R., Calafiore, G., Dabbene, F. (2013). Learning-Based Probabilistic Design. In: Randomized Algorithms for Analysis and Control of Uncertain Systems. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-4610-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4610-0_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4609-4

  • Online ISBN: 978-1-4471-4610-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics