Skip to main content

Robotic-Assisted Coronary Intervention

  • Chapter
  • First Online:
Textbook of Cardiovascular Intervention

Abstract

The current practice of percutaneous coronary intervention (PCI) lacks standardization and is regarded as an art. As the complexity of the lesions and procedures increase, intervention duration becomes longer, and there is an increased demand for precision and accuracy in device selection and position. Robotic systems have been suggested to enhance the performance of cardiovascular procedures. One of the technical features of a robotic system is the capability to control and accurately position (≤1-mm steps) the stent delivery system. The recent STLLR (Stent deployment Techniques on cLinicaL outcomes of patients treated with the cypheRstent) trial highlighted the impact of geographic miss and stent misplacement on clinical outcomes. A robotically assisted system may facilitate the positioning of the stent delivery system with a high degree of accuracy. With improved positioning, especially with advanced navigation systems, there is a potential to reduce exposure of patients to radiation and to minimize the volume of contrast media, thereby reducing the risk of contrast-induced nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costa MA, Angiolillo DJ, Tannenbaum M, et al. Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of multicenter prospective STLLR trial). Am J Cardiol. 2008;101:1704–11.

    Article  PubMed  CAS  Google Scholar 

  2. Kline LW, Miller DL, Balter S, et al. Occupational hazards in the interventional laboratory: time for a safer environment. Catheter Cardiovasc Interv. 2009;73:432–8.

    Article  Google Scholar 

  3. Goldstein JA, Balter S, Crowley M, et al. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv. 2004;63:407–11.

    Article  PubMed  Google Scholar 

  4. Ross AM, Segal J, Borenstein D, et al. Prevalence of spinal disc disease among interventional cardiologists. Am J Cardiol. 1997;79:68–70.

    Article  PubMed  CAS  Google Scholar 

  5. Duran AD, Duran GD, Ramirez RR, et al. Cataracts in interventional cardiology personnel. Retrospective evaluation study of lens injuries and dose (RELID Study). Eur Heart J. 2009;30:872.

    Google Scholar 

  6. Roguin A, Goldstein J, Bar O. Brain tumours among interventional cardiologists: a cause for alarm? Report of four new cases from two cities and a review of the literature. EuroIntervention. 2012;7:1081–6.

    Article  PubMed  Google Scholar 

  7. Garcia-Garcia HM, Tsuchida K, Meulenbrug H, et al. Magnetic navigation in a coronary phantom: experimental results. EuroIntervention. 2005;1:321–8.

    PubMed  Google Scholar 

  8. Steve D, Servatius H, Rostock T, et al. Reduced fluoroscopy during atrial fibrillation ablation: benefits of robotic guided navigation. J Cardiovasc Electrophysiol. 2010;21:6–12.

    Article  Google Scholar 

  9. Flugelman M, Shiran A, Nusimovici-Avadis D, et al. Medical positioning system: a technical report. EuroIntervention. 2008;4:158–60.

    Article  PubMed  Google Scholar 

  10. Jeron A, Fredersdorf S, Debl K, et al. First-in-man (FIM) experience with the Magnetic Medical Positioning System (MPS) for intracoronary navigation. EuroIntervention. 2009;5:552–7.

    Article  PubMed  Google Scholar 

  11. Weisz G, Smilowitz NR, Moses JW, Rabbani LE, Collins MB, Herscovici A, Jeron A, Leon MB, Luchner A. Magnetic positioning system in coronary angiography and percutaneous intervention: A feasibility and safety study. Catheterization and cardiovascular interventions: official journal of the Society for Cardiac Angiography and Interventions. 2013

    Google Scholar 

  12. Weisz G, Wong D, Laroche V, et al. Intracoronary navigation and positioning using the MediGuide gMPS enabled GMC system. Eurointervention. 2009;5:E11.

    Google Scholar 

  13. Ernst S, Ouyang F, Linder C, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system: magnetic remote catheter ablation. Circulation. 2004;109:1472–5.

    Article  PubMed  Google Scholar 

  14. Ernst S, Ouyang F, Linder C, et al. Modulation of the slow pathway in the presence of a persistent left superior caval vein using the novel magnetic navigation system Niobe. Europace. 2004;6:10–4.

    Article  PubMed  Google Scholar 

  15. Faddis MN, Blume W, Finney J, et al. Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation. 2002;106:2980–5.

    Article  PubMed  Google Scholar 

  16. Tsuchida K, Garcia-Garcia HM, Tanimoto S, et al. Feasibility and safety of guidewire navigation using a magnetic navigation system in coronary artery stenoses. EuroIntervention. 2005;1:329–35.

    PubMed  Google Scholar 

  17. Atmakuri SR, Lev EI, Alviar C, et al. Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions. J Am Coll Cardiol. 2006;47:515–21.

    Article  PubMed  Google Scholar 

  18. Kiemeneij F, Patterson MS, Amoroso G, et al. Use of the stereotaxis Niobe magnetic navigation system for percutaneous coronary intervention: results from 350 consecutive patients. Catheter Cardiovasc Interv. 2008;71:510–6.

    Article  PubMed  Google Scholar 

  19. Hertting K, Ernst S, Stahl F, et al. Use of the novel magnetic system Niobe in percutaneous coronary interventions; the Hamburg experience. EuroIntervention. 2005;1:336–9.

    PubMed  Google Scholar 

  20. Ramcharitar S, Patterson MS, van Genus RJ, et al. Magnetic navigation system used successfully to cross a crushed stent in a bifurcation that failed with conventional wires. Catheter Cardiovasc Interv. 2007;69:852–5.

    Article  PubMed  Google Scholar 

  21. Ramcharitar S, van der Giessen WJ, van der Ent M, et al. Randomized comparison of the magnetic navigation system vs. standard wires in the treatment of bifurcations. Eur Heart J. 2011;32:1479–83.

    Article  PubMed  Google Scholar 

  22. Tsuchida K, Garcia-Garcia HM, van der Giessen WJ, et al. Guidewire navigation in coronary artery stenosis using a novel magnetic navigation system: first clinical experience. Catheter Cardiovasc Interv. 2006;67:356–63.

    Article  PubMed  Google Scholar 

  23. Krause K, Adamu U, Weber M, et al. German stereotaxis-guided percutaneous coronary intervention study group: first multicenter real world experience. Clin Res Cardiol. 2009;98:541–7.

    Article  PubMed  Google Scholar 

  24. Ramcharitar S, van Geuns RJ, Patterson M, et al. A randomized comparison of the magnetic navigation system versus conventional percutaneous coronary intervention. Catheter Cardiovasc Interv. 2008;72:761–70.

    Article  PubMed  Google Scholar 

  25. Ramicharitar S, van Geuns RJ. Magnetic navigation in patients with coronary artery bypass grafting. EuroIntervention. 2009;5(Supplement D):D58–63.

    Google Scholar 

  26. Bach RG, Leach C, Milov SA, et al. Use of magnetic navigation to facilitate transcatheter alcohol septal ablation for hypertrophic obstructive cardiomyopathy. J Invasive Cardiol. 2006;18:E178.

    Google Scholar 

  27. Ramcharitar S, van der Giessen WJ, van der Ent M, et al. The feasibility and safety of applying the Magnetic Navigation System to manage chronically occluded vessels: a single centre experience. EuroIntervention. 2011;6:711–6.

    Article  PubMed  Google Scholar 

  28. Beyar R, Wenderow T, Lindner D, et al. Concept, design and pre-clinical studies for remote control percutaneous coronary interventions. EuroIntervention. 2005;1:340–5.

    PubMed  Google Scholar 

  29. Beyar R, Gruberg L, Deleanu D, et al. Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial. J Am Coll Cardiol. 2006;47:296–300.

    Article  PubMed  Google Scholar 

  30. Granada JF, Delgado JA, Uribe MP, et al. First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc Interv. 2011;4:460–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giora Weisz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Magallon, J.C., Weisz, G. (2014). Robotic-Assisted Coronary Intervention. In: Thompson, C. (eds) Textbook of Cardiovascular Intervention. Springer, London. https://doi.org/10.1007/978-1-4471-4528-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4528-8_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4527-1

  • Online ISBN: 978-1-4471-4528-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics