Skip to main content

Critical Issues of Metal-Supported Fuel Cell

  • Chapter
  • First Online:
Solid Oxide Fuels Cells: Facts and Figures

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Metal-Supported SOFCs (MS-SOFCs), wherein the supporting component of the cell is made of a porous alloy, are referred to as the third generation SOFC operating at temperature down to 500–650 °C. This technology is expected to decrease significantly capital and operational costs, while increasing the lifetime of cells due to lower operating temperature and higher redox stability. The chapter reviews MS-SOFC development with a focus given to main issues affecting the performance and longevity of single cells. It addresses critical issues for selection of alloy materials based on material cost, thermal expansion coefficient, corrosion rate, particle size, and Cr evaporation issues. Protective coatings, cell architecture, and advanced fabrication processes are then presented to illustrate the level of technical refinement currently achieved. Performance of produced MS-SOFCs is finally discussed to pinpoint factors contributing to major electrochemical losses and possible routes for improvement are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Wu, X. Liu, Recent development of SOFC metallic interconnect. J. Mater. Sci. Technol. 26(4), 293–305 (2010)

    Article  Google Scholar 

  2. S. Megel, E. Girdauskaite et al., Area specific resistance of oxide scales grown on ferritic alloys for solid oxide fuel cell interconnects. J. Power Sources (2010). doi:10.1016/2010.09.003

    MATH  Google Scholar 

  3. J. Froitzheim, G.H. Meier et al., Development of high strength ferritic steel for interconnect application in SOFCs. J. Power Sources 178, 163–173 (2008)

    Article  Google Scholar 

  4. N. Shaigan, W. Qu et al., A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J. Power Sources 195, 1529–1542 (2010)

    Article  Google Scholar 

  5. Z. Yang, G.G. Xia et al., (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int. J. Hydrogen Energ. 32(16), 3648–3654 (2007)

    Article  Google Scholar 

  6. X. Montero, F. Tietz et al., MnCo1.9Fe0.1O4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells. J. Power Sources 184, 172–179 (2008)

    Article  Google Scholar 

  7. Z.G. Yang, J.W. Stevenson et al., Material properties database for selection of high-temperature alloys and concepts of alloy design for SOFC applications. PNNL-14116. Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 (2002)

    Google Scholar 

  8. M. Brandner, Herstellung einer Metall/keramic-Verbundstruktur für Hochtemperaturbrennstoffzellen in mobilen Anwendungen. Berichte des Forschungzentrum Jülich-4238, (2006) ISSN 0944-2952

    Google Scholar 

  9. M.C. Tucker, T.Z. Sholklapper et al., Progress in metal-supported SOFCs. ECS Trans. 25(2), 673–680 (2009)

    Article  Google Scholar 

  10. M.C. Tucker, In metal-supported solid oxide fuel cells: a review. J. Power Sources 195(15), 4570–4582 (2010)

    Article  Google Scholar 

  11. M. Brandner, M. Bram et al., Electrically conductive diffusion barrier layers for metal-supported SOFC. Solid State Ionics 179, 1501–1504 (2008)

    Article  Google Scholar 

  12. S. Molin, M. Gazda et al., High temperature oxidation of porous alloys for solid oxide fuel cell applications. Solid State Ionics 181, 1214–1220 (2010)

    Article  Google Scholar 

  13. Y. Liu, D.Y. Chen, Protective coatings for Cr2O3—forming interconnects of solid oxide fuel cells. Int. J. Hydrogen Energ. 34, 9220–9226 (2009)

    Article  Google Scholar 

  14. I. Villarreal, M. Rivas et al., Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers. ECS Trans. 25(2), 689–694 (2009)

    Article  Google Scholar 

  15. D. Wiedenmann, U.F. Vogt et al., WDX studies on ceramic diffusion barrier layers of metal supported SOECs. Fuel Cells 9(6), 861–866 (2009)

    Article  Google Scholar 

  16. R.H. Henne, T. Franco et al., High-velocity DC-VPS for diffusion and protecting barrier layers in solid oxide fuel cells (SOFCs). J. Therm. Spray Technol. 15(4), 695–700 (2006)

    Article  Google Scholar 

  17. T. Franco, Z. HoshiarDin et al., Plasma sprayed diffusion barrier layers based on doped perovskite-type LaCrO3 at substrate-anode interface in solid oxide fuel cells. J Fuel Cell Sci. Tech. 4(4), 406–412 (2007)

    Article  Google Scholar 

  18. T. Franco, K. Schibinger et al., Ceramic diffusion barrier layers for metal supported SOFCs. ECS Trans. 7(1), 771–780 (2007)

    Article  Google Scholar 

  19. G. Schiller, A. Ansar et al., High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC). J. Appl. Electrochem. 39, 293–301 (2009)

    Article  Google Scholar 

  20. T. Franco, M. Brandner et al., Recent development aspects of metal supported thin-film SOFC. ECS Trans. 25(2), 681–688 (2009)

    Article  Google Scholar 

  21. P. Szabo, J. Arnold et al., Progress in metal supported solid oxide fuel cells and stacks for APU. ECS Trans. 25(2), 175–185 (2009)

    Article  Google Scholar 

  22. Y.B. Matus, L.C. De Jonghe et al., Metal-supported solid oxide fuel cell membranes for rapid thermal cycling. Solid State Ionics 176(5–6), 443–449 (2005)

    Article  Google Scholar 

  23. R.T. Leah, N.P. Brandon, Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500–600 °C. J. Power Sources 145, 336–352 (2005)

    Article  Google Scholar 

  24. H. Kurokawa, G.Y. Lau, Water-based binder system for SOFC porous steel substrate. J. Process. Technol. 182, 469–476 (2007)

    Article  Google Scholar 

  25. N.P. Brandon, D. Corcoran et al., Development of metal supported solid oxide fuel cells for operation at 500–600 °C. J. Mater. Eng. Performance 13(3), 253–256 (2004)

    Article  Google Scholar 

  26. M.C. Tucker, G.Y. Grace, Stability and robustness of metal-supported SOFCs. J. Power Sources 175, 447–451 (2008)

    Article  Google Scholar 

  27. M.C. Tucker, G.Y. Lau et al., Performance of metal-supported SOFCs with infiltrated electrodes. J. Power Sources 171(2), 477–482 (2007)

    Article  Google Scholar 

  28. P. Blennow, J. Hjelm et al., Manufacturing and characterization of metal-supported solid oxide fuel cells. J. Power Sources (2010). doi:10.1016/2010.08.088

    MATH  Google Scholar 

  29. P. Blennow, J. Hjelm et al., Development of planar metal supported SOFC with novel cermet anode. ECS Trans. 25(2), 701–710 (2009)

    Article  Google Scholar 

  30. Z. Wang, J.O. Berghaus et al., Dynamic evaluation of low-temperature metal-supported solid oxide fuel cell oriented to auxiliary power units. J. Power Sources 176(1), 90–95 (2008)

    Article  Google Scholar 

  31. Q.A. Huang, J. Oberste-Berghaus et al., Polarization analysis for metal-supported SOFCs from different fabrication processes. J. Power Sources 177(2), 339–347 (2008)

    Article  Google Scholar 

  32. J.O. Berghaus, J.G. Legoux et al., Suspension HVOF spraying of reduced temperature solid oxide fuel cell electrolytes. J. Therm. Spray Technol. 17, 700–707 (2008)

    Article  Google Scholar 

  33. G. Schiller, R.H. Henne et al., Development of vacuum plasma sprayed thin-film SOFC for reduced operating temperature. Fuel Cells Bull. 21, 7–12 (2000)

    Article  Google Scholar 

  34. Y.M. Kim, P. Kim-Lohsoontorn et al., Effect of unsintered gadolinium-doped ceria buffer layer on performance of metal-supported solid oxide fuel cells using unsintered barium strontium cobalt ferrite cathode. J. Power Sources 195(19), 6420–6427 (2010)

    Article  Google Scholar 

  35. Q. Huang, B. Wang et al., Impedance diagnosis of metal-supported SOFCs with SDC as electrolyte. J. Power Sources 191, 297–303 (2009)

    Article  Google Scholar 

  36. D. Waldbillig, O. Kesler, Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers. J. Power Sources 191, 320–329 (2009)

    Article  Google Scholar 

  37. L.R. Pederson, P. Singh et al., Review: application of vacuum deposition methods to solid oxide fuel cells. Vaccum 80, 1066–1083 (2006)

    Article  Google Scholar 

  38. S.R. Hui, D. Yang et al., Metal-supported solid oxide fuel cell operated at 400–600 °C. J. Power Sources 167, 336–339 (2007)

    Article  Google Scholar 

  39. Z. Yang, G.G. Xia et al., Evaluation of Ni-Cr base alloys for SOFC interconnect applications. J. Power Sources 160, 1104–1110 (2006)

    Article  Google Scholar 

  40. Y. Kong, B. Hua et al., A cost-effective process for fabrication of metal-supported solid oxide fuel cells. Int. J. Hydrogen Energ. 35, 4592–4596 (2010)

    Article  Google Scholar 

  41. K.H. Kim, Y.M. Park et al., Fabrication and evaluation of the thin NiFe supported solid oxide fuel cell by co-firing method. Energy (2010). doi:10.1016/.2010.07.018

    Google Scholar 

  42. N. Oishi, Y. Yoo, Fabrication of cerium oxide based SOFC having a porous stainless steel support. ECS Trans. 25(2), 739–744 (2009)

    Article  Google Scholar 

  43. R. Hui, J.O. Berghaus et al., High performance metal-supported solid oxide fuel cells fabricated by thermal spray. J. Power Sources 191(2), 371–376 (2009)

    Article  Google Scholar 

  44. M. Lang, A. Dresel, T. Franco, Z. Ilhan, A. Nestle, G. Schiller, P. Szabo, Electrochemical characterization of vacuum plasma sprayed planar solid oxide fuel cells and short stacks for mobile application. Ceram. Eng. Sci. Proc. 26(4), 67–74 (2005)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge FP7 EFFIPRO project funded by the European Union (FP7 Project—Grant Agreement 3227560) EU—FCH JU RAMSES Project Under Grant agreement Number 256768 and StackPro project (number 18532/530) funded by the Norwegian Research Council (Renergi Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yngve Larring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Larring, Y., Fontaine, ML. (2013). Critical Issues of Metal-Supported Fuel Cell. In: Irvine, J., Connor, P. (eds) Solid Oxide Fuels Cells: Facts and Figures. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4456-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4456-4_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4455-7

  • Online ISBN: 978-1-4471-4456-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics