Skip to main content

Antiplatelet Agents: Current and Novel

  • Chapter
  • First Online:
Antiplatelet and Anticoagulation Therapy

Part of the book series: Current Cardiovascular Therapy ((CCT))

Abstract

Antiplatelet agents are drugs that reduce the ability of platelets to engage in thrombus formation. They do so by reducing the ability of platelets to aggregate together and also by inhibiting other aspects of platelet function that collectively contribute to thrombus formation. Ideally, antiplatelet agents add to the natural means through which platelet function is regulated. There are some antiplatelet agents, especially aspirin and clopidogrel, which are already widely used as antithrombotic agents. Also there are newer agents, prasugrel and ticagrelor, that have been recently licensed and are now being used in place of clopidogrel in some patients. In addition there are some novel agents that are either already in development or are suitable candidates for development. This chapter describes the pharmacology of those antiplatelet agents that a physician is likely to encounter in clinical practice both now and in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel SR, Hartwig JH, Italiano Jr JE. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005;115:3348–54.

    Article  PubMed  CAS  Google Scholar 

  2. Kuter DJ. Biology and chemistry of thrombopoietic agents. Semin Hematol. 2010;47:243–8.

    Article  PubMed  CAS  Google Scholar 

  3. Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927–9.

    Article  PubMed  CAS  Google Scholar 

  4. Packham MA, Rand ML. Historical perspective on ADP-induced platelet activation. Purinergic Signal. 2011;7:283–92.

    Article  PubMed  CAS  Google Scholar 

  5. Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28:403–12.

    Article  PubMed  CAS  Google Scholar 

  6. Leger AJ, Covic L, Kuliopulos A. Protease-activated receptors in cardiovascular diseases. Circulation. 2006;114:1070–7.

    Article  PubMed  CAS  Google Scholar 

  7. Wijeyeratne YD, Heptinstall S. Anti-platelet therapy: ADP receptor antagonists. J Clin Pharmacol. 2011;72:647–57.

    CAS  Google Scholar 

  8. Giannarelli C, Zafar MU, Badimon JJ. Prostanoid and TP-receptors in atherothrombosis: is there a role for their antagonism? Thromb Haemost. 2010;104:949–54.

    Article  PubMed  CAS  Google Scholar 

  9. Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins. J Thromb Haemost. 2009;Suppl 1:200–5.

    Article  PubMed  CAS  Google Scholar 

  10. Cerletti C, Tamburrelli C, Izzi B, Gianfagna F, de Gaetano G. Platelet-leukocyte interactions in thrombosis. Thromb Res. 2012;129:263–6.

    Article  PubMed  Google Scholar 

  11. Owens 3rd AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res. 2011;108:1284–97.

    Article  PubMed  CAS  Google Scholar 

  12. Midgett C, Stitham J, Martin KA, Hwa J. Prostacyclin receptor regulation–from transcription to trafficking. Curr Mol Med. 2011;11:517–28.

    PubMed  CAS  Google Scholar 

  13. Truss NJ, Warner TD. Gasotransmitters and platelets. Pharmacol Ther. 2011;132:196–203.

    Article  PubMed  CAS  Google Scholar 

  14. Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93:141–7.

    Article  PubMed  CAS  Google Scholar 

  15. Whittle BJ, Moncada S, Vane JR. Comparison of the effects of prostacyclin (PGI2), prostaglandin E1 and D2 on platelet aggregation in different species. Prostaglandins. 1978;3:373–8.

    Google Scholar 

  16. Giles H, Leff P, Bolofo ML, Kelly MG, Robertson AD. The classification of prostaglandin DP-receptors in platelets and vasculature using BW A868C, a novel, selective and potent competitive antagonist. Br J Pharmacol. 1989;96:291–300.

    Article  PubMed  CAS  Google Scholar 

  17. Iyú D, Jüttner M, Glenn JR, White AE, Johnson AJ, Fox SC, Heptinstall S. PGE1 and PGE2 modify platelet function through different prostanoid receptors. Prostaglandins Other Lipid Mediat. 2011;94:9–16.

    Article  PubMed  Google Scholar 

  18. Gross S, Tilly P, Hentsch D, Vonesch JL, Fabre JE. Vascular wall-produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors. J Exp Med. 2007;204:311–20.

    Article  PubMed  CAS  Google Scholar 

  19. Marcus AJ, Broekman MJ, Drosopoulos JHF, Islam N, Alyonycheva TN, Saffer LB, Hajjar KA, Posnett DN, Schoenborn MA, Schooley KA, Gayle RB, Maliszewski CR. The endothelial cells ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest. 1997;99:1351–60.

    Article  PubMed  CAS  Google Scholar 

  20. Glenn JR, White AE, Johnson AJ, Fox SC, Behan MWH, Dolan G, Heptinstall S. Leukocyte count and leukocyte ecto-nucleotidase are major determinants of the effects of adenosine triphosphate and adenosine diphosphate on platelet aggregation in human blood. Platelets. 2005;16:159–70.

    Article  PubMed  CAS  Google Scholar 

  21. Glenn JR, White AE, Johnson AJ, Fox SC, Myers B, Heptinstall S. Raised levels of CD39 in leucocytosis result in marked inhibition of ADP-induced aggregation via rapid hydrolysis. Platelets. 2008;19:59–69.

    Article  PubMed  CAS  Google Scholar 

  22. Heptinstall S, Johnson A, Glenn JR, White AE. Adenine nucleotide metabolism in human blood - important roles for leukocytes and erythrocytes. J Thromb Haemost. 2005;3:2331–9.

    Google Scholar 

  23. Griffith DA, Jarvis SM. Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta. 1996;1286:153–81.

    Article  PubMed  CAS  Google Scholar 

  24. Loffler M, Morote-Garcia JC, Eltzschig SA, Coe IR, Eltzschig HK. Physiological roles of vascular nucleoside transporters. Arterioscler Thromb Vasc Biol. 2007;27:1004–13.

    Article  PubMed  Google Scholar 

  25. Iyú D, Glenn JR, White AE, Johnson AJ, Fox SC, Heptinstall S. The role of prostanoid receptors in mediating the effects of PGE(2) on human platelet function. Platelets. 2010;21:329–42.

    Article  PubMed  Google Scholar 

  26. Gray SJ, Heptinstall S. Interactions between prostaglandin E2 and inhibitors of platelet aggregation which act through cyclic AMP. Eur J Pharmacol. 1991;194:63–70.

    Article  PubMed  CAS  Google Scholar 

  27. Botting RM. Inhibitors of cyclooxygenases: mechanisms, selectivity and uses. J Physiol Pharmacol. 2006;57 Suppl 5:113–24.

    PubMed  Google Scholar 

  28. May JA, Heptinstall S, Cole AT, Hawkey CJ. Platelet responses to several agonists and combinations of agonists in whole blood: a placebo controlled comparison of the effects of a once daily dose of plain aspirin 300 mg, plain aspirin 75 mg and enteric coated aspirin 300 mg, in man. Thromb Res. 1997;88:183–92.

    Article  PubMed  CAS  Google Scholar 

  29. Perneby C, Wallén NH, Rooney C, Fitzgerald D, Hjemdahl P. Dose- and time-dependent antiplatelet effects of aspirin. Thromb Haemost. 2006;95:652–8.

    PubMed  CAS  Google Scholar 

  30. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet. 1988;13(2(8607)):349–60.

    Google Scholar 

  31. Antiplatelet Trialists’ Collaboration. Secondary prevention of vascular disease by prolonged antiplatelet treatment. Br Med J. 1988;296:320–31.

    Article  Google Scholar 

  32. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy–I: prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Br Med J. 1994;308:81–106.

    Article  Google Scholar 

  33. Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Br Med J. 2002;324:71–86.

    Article  Google Scholar 

  34. Jones EW, Cockbill SR, Cowley AJ, Hanley SP, Heptinstall S. Effects of dazoxiben and low-dose aspirinon platelet behaviour in man. Br J Clin Pharmacol. 1983;15 Suppl 1:39S–44.

    Article  PubMed  Google Scholar 

  35. Lonsdale RJ, Heptinstall S, Westby JC, Berridge DC, Wenham PW, Hopkinson BR, Makin GS. A study of the use of the thromboxane A2 antagonist, sulotroban, in combination with streptokinase for local thrombolysis in patients with recent peripheral arterial occlusions: clinical effects, platelet function and fibrinolytic parameters. Thromb Haemost. 1993;69:103–11.

    PubMed  CAS  Google Scholar 

  36. Pulcinelli FM, Pignatelli P, Pesciotti M, Sebastiani S, Parisi S, Gazzaniga PP. Mechanism of the persisting TxA2 receptor antagonism by picotamide. Thromb Res. 1997;85:207–15.

    Article  PubMed  CAS  Google Scholar 

  37. Fontana P, Alberts P, Sakariassen KS, Bounameaux H, Meyer JP, Santana Sorensen A. The dual thromboxane receptor antagonist and thromboxane synthase inhibitor EV-077 is a more potent inhibitor of platelet function than aspirin. J Thromb Haemost. 2011;9:2109–11.

    Article  PubMed  CAS  Google Scholar 

  38. Sofi F, Marcucci R, Gori AM, Giusti B, Abbate R, Gensini GF. Clopidogrel non-responsiveness and risk of cardiovascular morbidity. An updated meta-analysis. Thromb Haemost. 2010;103:841–8.

    Article  PubMed  CAS  Google Scholar 

  39. Savi P, Herbert JM. Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost. 2005;31:174–83.

    Article  PubMed  CAS  Google Scholar 

  40. CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet. 1996;348:1329–39.

    Article  Google Scholar 

  41. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, Neumann FJ, Ardissino D, De Servi S, Murphy SA, Riesmeyer J, Weerakkody G, Gibson CM, Antman EM, TRITON-TIMI 38 Investigators. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001–15.

    Article  PubMed  CAS  Google Scholar 

  42. NICE. Prasugrel for the treatment of acute coronary syndromes with percutaneous coronary intervention. 2009. http://www.nice.org.uk/nicemedia/live/12324/45849/45849.pdf Accessed 1 Jan 2012.

  43. Wijeyeratne YD, Joshi R, Heptinstall S. Ticagrelor, a P2Y12 antagonist for use in acute coronary syndromes. Expert Rev Clin Cardiol. 2012;5:257–69.

    Google Scholar 

  44. van Giezen JJ, Nilsson L, Berntsson P, Wissing BM, Giordanetto F, Tomlinson W, Greasley PJ. Ticagrelor binds to human P2Y(12) independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. J Thromb Haemost. 2009;7:1556–65.

    Article  Google Scholar 

  45. Teng R, Oliver S, Hayes MA, Butler K. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos. 2010;38(9):1514–21.

    Article  PubMed  CAS  Google Scholar 

  46. Husted S, Emanuelsson H, Heptinstall S, Sandset PM, Wickens M, Peters G. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur Heart J. 2006;27:1038–47.

    Article  PubMed  CAS  Google Scholar 

  47. Storey RF, Husted S, Harrington RA, Heptinstall S, Wilcox RG, Peters G, Wickens M, Emanuelsson H, Gurbel P, Grande P, Cannon CP. Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. J Am Coll Cardiol. 2007;50:1852–6.

    Article  PubMed  CAS  Google Scholar 

  48. Gurbel PA, Bliden KP, Butler K, Tantry US, Gesheff T, Wei C, Teng R, Antonino MJ, Patil SB, Karunakaran A, Kereiakes DJ, Parris C, Purdy D, Wilson V, Ledley GS, Storey RF. Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study. Circulation. 2009;120:2577–85.

    Article  PubMed  CAS  Google Scholar 

  49. Gurbel PA, Bliden KP, Butler K, Antonino MJ, Wei C, Teng R, Rasmussen L, Storey RF, Nielsen T, Eikelboom JW, Sabe-Affaki G, Husted S, Kereiakes DJ, Henderson D, Patel DV, Tantry US. Response to ticagrelor in clopidogrel nonresponders and responders and effect of switching therapies: the RESPOND study. Circulation. 2010;121:1188–99.

    Article  PubMed  CAS  Google Scholar 

  50. Storey RF, Angiolillo DJ, Patil SB, Desai B, Ecob R, Husted S, Emanuelsson H, Cannon CP, Becker RC, Wallentin L. Inhibitory effects of ticagrelor compared with clopidogrel on platelet function in patients with acute coronary syndromes: the PLATO (PLATelet inhibition and patient Outcomes) PLATELET substudy. J Am Coll Cardiol. 2010;56:1456–62.

    Article  PubMed  CAS  Google Scholar 

  51. James S, Akerblom A, Cannon CP, Emanuelsson H, Husted S, Katus H, Skene A, Steg PG, Storey RF, Harrington R, Becker R, Wallentin L. Comparison of ticagrelor, the first reversible oral P2Y(12) receptor antagonist, with clopidogrel in patients with acute coronary syndromes: rationale, design, and baseline characteristics of the PLATelet inhibition and patient outcomes (PLATO) trial. Am Heart J. 2009;157:599–605.

    Article  PubMed  CAS  Google Scholar 

  52. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, Mahaffey KW, Scirica BM, Skene A, Steg PG, Storey RF, Harrington RA, Freij A, Thorsén M, PLATO Investigators. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045–57.

    Article  PubMed  CAS  Google Scholar 

  53. Iyú D, Glenn JR, White AE, Fox SC, van Giezen H, Nylander S, Heptinstall S. Mode of action of P2Y12 antagonists as inhibitors of platelet function. Thromb Haemost. 2010;105:96–106.

    Article  PubMed  Google Scholar 

  54. Storey RF, Becker RC, Harrington RA, Husted S, James SK, Cools F, Steg PG, Khurmi NS, Emanuelsson H, Cooper A, Cairns R, Cannon CP, Wallentin L. Characterization of dyspnoea in PLATO study patients treated with ticagrelor or clopidogrel and its association with clinical outcomes. Eur Heart J. 2011;32:2945–53.

    Article  PubMed  CAS  Google Scholar 

  55. van Giezen JJ, Sidaway J, Glaves P, Kirk I, Björkman JA. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J Cardiovasc Pharmacol Ther. 2012;17:164–72.

    Article  PubMed  Google Scholar 

  56. Iyú D, Glenn JR, White AE, Fox SC, Heptinstall S. Adenosine derived from ADP can contribute to inhibition of platelet aggregation in the presence of a P2Y12 antagonist. Arterioscler Thromb Vasc Biol. 2011;31:416–22.

    Article  PubMed  Google Scholar 

  57. Mahaffey KW, Wojdyla DM, Carroll K, Becker RC, Storey RF, Angiolillo DJ, Held C, Cannon CP, James S, Pieper KS, Horrow J, Harrington RA, Wallentin L. Ticagrelor compared with clopidogrel by geographic region in the platelet inhibition and patient outcomes (PLATO) trial. Circulation. 2011;124:544–54.

    Article  PubMed  CAS  Google Scholar 

  58. Fox SC, Behan MWH, Heptinstall S. Inhibition of ADP-induced intracellular Ca2+ responses and platelet aggregation by the P2Y12 receptor antagonists AR-C69931MX and clopidogrel is enhanced by prostaglandin E1. Cell Calcium. 2004;35:39–46.

    Article  PubMed  CAS  Google Scholar 

  59. Cattaneo M, Lecchi A. Inhibition of the platelet P2Y12 receptor for adenosine diphosphate potentiates the antiplatelet effect of prostacyclin. J Thromb Haemost. 2007;5:577–82.

    Article  PubMed  CAS  Google Scholar 

  60. Iyú D, Glenn JR, White AE, Fox SC, Dovlatova N, Heptinstall S. P2Y(12) and EP3 antagonists promote the inhibitory effects of natural modulators of platelet aggregation that act via cAMP. Platelets. 2011;22:504–15.

    Article  PubMed  Google Scholar 

  61. FDA. Advisory Committee Briefing Document. Ticagrelor. 2010. http://www.fda.gov/downloads/AdvisoryCommitteesMeetingMaterials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/UCM220197.pdf Accessed 1 Jan 2012.

  62. FDA. News release. FDA approves blood-thinning drug Brilinta to treat acute coronary syndromes. 2011. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm263964.htm Accessed 1 Jan 2012.

  63. Srinivasan S, Mir F, Huang JS, Khasawneh FT, Lam SC, Le Breton GC. The P2Y12 antagonists, 2-methylthioadenosine 5’-monophosphate triethyammonium salt and cangrelor (ARC69931MX), can inhibit human platelet aggregation through a Gi-independent increase in cAMP levels. J Biol Chem. 2009;284:16108–17.

    Article  PubMed  CAS  Google Scholar 

  64. Storey RF, Oldroyd KG, Wilcox RG. Open multicentre study of the P2T receptor antagonist AR-C69931MX assessing safety, tolerability and activity in patients with acute coronary syndromes. Thromb Haemost. 2001;85:401–7.

    PubMed  CAS  Google Scholar 

  65. Angiolillo DJ, Firstenberg MS, Price MJ, Tummala PE, Hutyra M, Welsby IJ, Voeltz MD, Chandna H, Ramaiah C, Brtko M, Cannon L, Dyke C, Liu T, Montalescot G, Manoukian SV, Prats J, Topol EJ, for the BRIDGE Investigators. Bridging antiplatelet therapy with cangrelor in patients undergoing cardiac surgery. A randomized controlled trial. J Am Med Assoc. 2012;307(3):265–74.

    Article  CAS  Google Scholar 

  66. Steinhubl SR, Oh JJ, Oestreich JH, Ferraris S, Charnigo R, Akers WS. Transitioning patients from cangrelor to clopidogrel: pharmacodynamic evidence of a competitive effect. Thromb Res. 2008;121:527–34.

    Article  PubMed  CAS  Google Scholar 

  67. Dovlatova NL, Jakubowski JA, Sugidachi A, Heptinstall S. The reversible P2Y antagonist cangrelor influences the ability of the active metabolites of clopidogrel and prasugrel to produce irreversible inhibition of platelet function. J Thromb Haemost. 2008;6:1153–9.

    Article  PubMed  CAS  Google Scholar 

  68. Ueno M, Rao SV, Angiolillo DJ. Elinogrel: pharmacological principles, preclinical and early phase clinical testing. Future Cardiol. 2010;6:445–53.

    Article  PubMed  CAS  Google Scholar 

  69. Bult H, Fret HR, Jordaens FH, Herman AG. Dipyridamole potentiates platelet inhibition by nitric oxide. Thromb Haemost. 1991;66:343–9.

    PubMed  CAS  Google Scholar 

  70. Dawicki DD, Agarwal KC, Parks Jr RE. Role of adenosine uptake and metabolism by blood cells in the antiplatelet actions of dipyridamole, dilazep and nitrobenzylthioinosine. Biochem Pharmacol. 1985;34:3965–72.

    Article  PubMed  CAS  Google Scholar 

  71. Diener HC, Cunha L, Forbes C, Sivenius J, Smets P, Lowenthal A. European stroke prevention study. 2. Dipyridamole and acetylsalicylic acid in the secondary prevention of stroke. J Neurol Sci. 1996;143:1–13.

    Article  PubMed  CAS  Google Scholar 

  72. Liu Y, Shakur Y, Yoshitake M, Kambayashi JiJ. Cilostazol (pletal): a dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. Cardiovasc Drug Rev. 2001;19:369–86.

    Article  PubMed  CAS  Google Scholar 

  73. Hagemeyer CE, Peter K. Targeting the platelet integrin GPIIb/IIIa. Curr Pharm Des. 2010;16:4119–33.

    Article  PubMed  CAS  Google Scholar 

  74. Zhao L, Bath PM, Fox S, May J, Judge H, Lösche W, Heptinstall S. The effects of GPIIb-IIIa antagonists and a combination of three other antiplatelet agents on platelet-leukocyte interactions. Curr Med Res Opin. 2003;19:178–86.

    Article  PubMed  CAS  Google Scholar 

  75. Zhao L, Bath PM, May J, Lösche W, Heptinstall S. P-selectin, tissue factor and CD40 ligand expression on platelet-leucocyte conjugates in the presence of a GPIIb/IIIa antagonist. Platelets. 2003;14:473–80.

    Article  PubMed  CAS  Google Scholar 

  76. Tricoci P, Huang Z, Held C, Moliterno DJ, Armstrong PW, Van de Werf F, White HD, Aylward PE, Wallentin L, Chen E, Lokhnygina Y, Pei J, Leonardi S, Rorick TL, Kilian AM, Jennings LH, Ambrosio G, Bode C, Cequier A, Cornel JH, Diaz R, Erkan A, Huber K, Hudson MP, Jiang L, Jukema JW, Lewis BS, Lincoff AM, Montalescot G, Nicolau JC, Ogawa H, Pfisterer M, Prieto JC, Ruzyllo W, Sinnaeve PR, Storey RF, Valgimigli M, Whellan DJ, Widimsky P, Strony J, Harrington RA, Mahaffey KW, TRACER Investigators. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med. 2012;366:20–33.

    Article  PubMed  CAS  Google Scholar 

  77. Ungerer M, Rosport K, Bültmann A, Piechatzek R, Uhland K, Schlieper P, Gawaz M, Münch G. Novel antiplatelet drug revacept (dimeric glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation. 2011;123:1891–9.

    Article  PubMed  CAS  Google Scholar 

  78. Firbas C, Siller-Matula JM, Jilma B. Targeting von willebrand factor and platelet glycoprotein Ib receptor. Expert Rev Cardiovasc Ther. 2010;8:1689–701.

    Article  PubMed  CAS  Google Scholar 

  79. Heptinstall S, Espinosa DI, Manolopoulos P, Glenn JR, White AE, Johnson A, Dovlatova N, Fox SC, May JA, Hermann D, Magnusson O, Stefansson K, Hartman D, Gurney M. DG-041 inhibits the EP3 prostanoid receptor--a new target for inhibition of platelet function in atherothrombotic disease. Platelets. 2008;19:605–13.

    Article  PubMed  CAS  Google Scholar 

  80. Singh J, Zeller W, Zhou N, Hategen G, Mishra R, Polozov A, Yu P, Onua E, Zhang J, Zembower D, Kiselyov A, Ramírez JL, Sigthorsson G, Bjornsson JM, Thorsteinsdottir M, Andrésson T, Bjarnadottir M, Magnusson O, Fabre JE, Stefansson K, Gurney ME. Antagonists of the EP3 receptor for prostaglandin E2 are novel antiplatelet agents that do not prolong bleeding. ACS Chem Biol. 2009;4:115–26.

    Article  PubMed  CAS  Google Scholar 

  81. Fox SC, May JA, Johnson A, Hermann D, Streiter D, Hartman D, Heptinstall S, Effects on platelet function of an EP3 receptor antagonist used alone and in combination with a P2Y12 antagonist both in-vitro and ex-vivo in human volunteers. Platelets 2012.

    Google Scholar 

Download references

Acknowledgements

The electron micrographs in Figs. 1.3, 1.5 and 1.7 were produced by Dr. MW Ramsey when he was a medical student at the University of Nottingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Heptinstall B.Sc., Ph.D. .

Editor information

Editors and Affiliations

Additional information

Conflicts of Interest

Stan Heptinstall on behalf of the University of Nottingham has received research grants for laboratory investigations on the P2Y12 antagonists clopidogrel, prasugrel, ticagrelor and cangrelor and the EP3 antagonist DG-041. He is also a shareholder and director of Platelet Solutions Ltd, a spinout company of the University of Nottingham that engages in platelet function testing.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Heptinstall, S. (2013). Antiplatelet Agents: Current and Novel. In: Ferro, A., Garcia, D. (eds) Antiplatelet and Anticoagulation Therapy. Current Cardiovascular Therapy. Springer, London. https://doi.org/10.1007/978-1-4471-4297-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4297-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4296-6

  • Online ISBN: 978-1-4471-4297-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics