Skip to main content

Periodic Effects of Runner-Casing Interaction

  • Chapter
  • First Online:
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an exception, see the Francis example with ν = 0 in chapter 3.3.1.

  2. 2.

    To maintain consistency within the present chapter, some of the parameter names have been changed compared to [38].

References

  1. Egusquiza, E., Mateos, B., & Escaler, X. (2002). Analysis of runner stator interaction in operating pump-turbines. 21th IAHR Symposium on Hydraulic Machinery and Systems, Lausanne

    Google Scholar 

  2. Tanaka, H. (1990). Vibration behaviour and dynamic stress of runners of very high head reversible pump turbines. IAHR Section Hydraulic Machinery, Equipment, and Cavitation, 15th Symposium, Belgrade

    Google Scholar 

  3. Thomas, D. L. (1979). Dynamics of rotationally symmetric structures, Internat. Journal for Numerical Methods in Engineering, 14, 81–12.

    Article  MATH  Google Scholar 

  4. Coutu, A., Velagandula, O., & Nennemann, B. (2005). Francis Runner Forced Response Technology, Waterpower XIV, Austin

    Google Scholar 

  5. Fisher, R. K., Powell, C., Franke, G., Seidel, U., & Koutnik, J. (2004). Contributions to the improved understanding of the dynamic behavior of pump turbines and use thereof in dynamic design. 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, Sweden

    Google Scholar 

  6. ISO 1940/1 Mechanical vibrations - Balance quality requirements of rigid rotors—Part 1: Determining of residual unbalance, First edition, 1986-09-01.

    Google Scholar 

  7. Gentner, C., Staehle, M., & Sallaberger, M. (2002). Unsteady numerical analysis of pressure pulsations in the spiral casing and runner of a pump turbine: Proceeding Hydraulic Machinery and Systems 21st IAHR Symposium, Lausanne

    Google Scholar 

  8. Bartkowiak, J., Deslandes, L., & Finnegan, P. (2009). Repair of the Unit 3 GM Shrum Francis Turbine After a Major Runner Failure (pp. 27–30). Spokane: Waterpower XVI.

    Google Scholar 

  9. Zobeiri, A., Kueny, J.L., Farhat, M., & Avellan, F. (2006). Pump-Turbines Rotor-Stator Interactions in Generating Mode: Pressure Fluctuation in Distribution Channel, 23rd IAHR Symposium, Yokohama

    Google Scholar 

  10. Greitzer, E. M., Tan, Ch. S., & Graf, M. B. (2004). Internal Flow, Cambridge University Press, Cambridge

    Google Scholar 

  11. Benkö, G. B., & Holmén, E. K. (1996). Parametric resonances in umbrella-type generating units. Symposium on vibrations in hydraulic pumps and turbines, Manchester, England, 14–16 Sept 1966

    Google Scholar 

  12. Koutnik, J., Lazar, L. (2002). Achievements of Rotor Vibration Monitoring at Pumped Storage Power Plant Dlouhé Strán?. 12th International Seminar on Hydro Power Plants, Vienna

    Google Scholar 

  13. Franke, G., Powell, C., Seidel, U., Koutnik, J., & Fisher R. (2003). On pressure mode shapes arising from rotor stator interactions. 11th IAHR International Meeting of the Work Group on the Behavior of Hydraulic Machinery Under Steady Oscillatory Conditions, Stuttgart

    Google Scholar 

  14. Coutu A., Roy M., Monette C., & Nennemann B. (2008). Experience with rotor-stator interactions in high head Francis runner. IAHR 24th Symposium on Hydraulic Machinery Systems, Foz do Iguassú

    Google Scholar 

  15. Kaspar, K., & Weisser, H. (1989). Damage to hydropower plants of modern construction, Upgrading and Refurbishing Hydropower Plants II Water Power & Dams Construction. Switzerland: Zurich.

    Google Scholar 

  16. Ohura Y., Fujii, M., Sugimoto, O., Tanaka, H., & Yamagata, I. (1990). Vibrations of the powerhouse structure of a pumped storage power plant. 15th Symposium of IAHR, Belgrade

    Google Scholar 

  17. Tamasukuri T., Kikuchi K., & Satch J. (1992). Progress in ultra high head single-stage pump-turbines, Water Power & Dam Construction

    Google Scholar 

  18. Coutu A., Proulx D., Coulson S., & Demers A. (2004). Dynamic assessment of hydraulic turbines- high head francis, Hydro Vision 2004, Montréal, QC, Aug 15–18, 2004.

    Google Scholar 

  19. Jones, R. K., & March, P. A. (1987). Blade-gate interaction frequency in hydroturbines, (T.V.A Report No. WR28-4-640-103, Aug 30)

    Google Scholar 

  20. O’Kelly, F. (1990). Blade/Gate interaction, machine dynamics notebook, Hydro Review

    Google Scholar 

  21. Nennemann, B., Vu, T. C., & Farhat, M. (2005). CFD prediction of unsteady wicket gate-runner interaction in Francis turbines: A new standard hydraulic design procedure. Hydro 2005, Villach, paper 2.05, October 17–20

    Google Scholar 

  22. Lais, St., Liang, Q., Henggeler, U., Weiss, Th., Escaler, X., & Egusquiza, E. (2008). Dynamic Analysis of Francis Runners: Experiment and Numerical Simulation. IAHR 24th Symposium on Hydraulic Machinery Systems, Foz do Iguassú

    Google Scholar 

  23. Gülich, J. F. (2008). Centrifugal Pumps, Springer, Switzerland

    Google Scholar 

  24. Nicolet, C., Ruchonnet, N., & Avellan, F. (2006). One-Dimensional Modeling of Rotor-Stator Interaction in Francis Pump-Turbine. 23rd IAHR Symposium, Yokohama

    Google Scholar 

  25. Keller, M., & Sallaberger, M. (2006). Modern design of pump turbines. 14th International Seminar Hydropower Plants, Vienna

    Google Scholar 

  26. Sick, M., Michler, W. Weiss, T., Keck, H (2009). Recent developments in the dynamic analysis of water turbines. Proceeding IMechE Vol. 223 Part A: J. Power and Energy, JPE578

    Google Scholar 

  27. Fritz, J. (2002). Investigation of the dynamic loads acting on the diffusers of multistage pumps: A comparison of theoretical and experimental methods. 21th IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, Sept 9–12, 2002

    Google Scholar 

  28. Nennemann B., & Vu T. C. (2007). Kaplan turbine blade and discharge ring cavitation prediction using unsteady CFD, IAHR WG (Cavitation and Dynamic Problems in Hydraulic Machinery and Systems) 2nd Meeting, Timisoara, Oct 24–26 2007.

    Google Scholar 

  29. Schmied J., Weiss T., & Angehrn R. (2006). Detuning of pelton runners. 7th IFToMM Conference on Rotor Dynamics, Vienna, 25–28 Sept 2006.

    Google Scholar 

  30. Parkinson, E., Neury, C., Garcin, H., Vuilloud, G., & Weiss, Th. (2006). Unsteady analysis of a Pelton runner with flow and mechanical simulations. Hydropower & Dams, (2), 101–105

    Google Scholar 

  31. Kvicinsky, S., Kueny, J.L., Avellan, F. & Parkinson, E. (2002). Experimental and numerical analysis of free surface flow in a rotating bucket, Proceeding Hydraulic Machinery and Systems 21st IAHR Symposium Lausanne,

    Google Scholar 

  32. Perrig, A., Farhat, A., Avellan, F., Parkinson, E., Garcin, H., Bissel, C., Valle, M., & Favre, J. (2004). Numerical flow analysis in a Pelton turbine bucket, 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, Sweden

    Google Scholar 

  33. Den Hartog, J. P. (1929). Mechanical Vibrations in Penstocks of Hydroelectric Turbine Installations. Trans ASME 51, 101–110 (and discussion thereof)

    Google Scholar 

  34. Chen, Y. N. (1961). Oscillations of water pressure in spiral casings of storage pumps. Technical Review Sulzer, Research Issue (Turbo-machinery), 21–34

    Google Scholar 

  35. Nechleba, M. (1972). Oscillations of water pressure in pressurized pipes of hydraulic machines, especially pumps (in German). Maschinenbautechnik 21 113–116

    Google Scholar 

  36. Doerfler, P. (1984). On the role of phase resonance in vibrations caused by blade passage in radial hydraulic turbomachines. IAHR Section Hydraulic Machinery, Equipment, and Cavitation, 12th Symposium (Stirling, 1984)

    Google Scholar 

  37. Rovaro Brizzi M. (1993). Steady oscillatory conditions originating from the hydraulic machines. Experimentation upon the attenuation possibilities on the Gallicano powerplant. IAHR Work Group 1, 6th meeting, Lausanne, paper 3–2.

    Google Scholar 

  38. Nishiyama, Y., Suzuki, T., Yonezawa K., Tanaka H., Doerfler P., & Tsujimoto Y. (2011). Phase resonance in a centrifugal compressor. International Journal of Fluid Machinery and Systems, 4, 3,

    Google Scholar 

  39. Tsujimoto, Y., Tanaka, H., Doerfler, P., Yonezawa, K., Suzuki, T., & Makikawa, K. (2010). Effects of Acoustic Resonance and Volute Geometry on Phase Resonance in a Centrifugal Fan, 26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China

    Google Scholar 

  40. Yan, J., Koutnik, J., Seidel, U., & Hübner, B. (2010). Compressible simulation of rotor-stator interaction in pump-turbines. IAHR 25th Symposium on Hydraulic Machinery and Systems, Timisoara

    Google Scholar 

  41. Netsch, H., Giacometti, A. (1982). Axial flow-induced vibrations in large high-head machines. Water Power & Dam Construction, 34, 8, 21–27

    Google Scholar 

  42. Parmakian, J. (1954). Vibration of the grand coulee pump-discharge lines. Trans ASME, 76, 783–790.

    Google Scholar 

  43. Alming, K. (1966). Damping of pressure pulsations from a turbine by an energy-absorber in the pipeline. Proceeding IME 181, part 3A, 125–133

    Google Scholar 

  44. Ruud, F. O. (1987). Vibration of penstocks in hydroelectric installations. Waterpower 87, 2214–2223

    Google Scholar 

  45. Makay, E., Cooper, P., Sloteman, D. P., & Gibson, R. (1993). Investigation of pressure pulsations arising from impeller/diffuser interaction in a large centrifugal pump. Proceeding Rotating Machinery Conference. Somerset

    Google Scholar 

  46. Tee T. K. (2001). Noise reduction at the Dinorwig power station. Hydro’01, 259–268

    Google Scholar 

  47. Todd R.V. (2000). Vibrations of the Upper Nevada Penstock at Hoover Dam, Hydrovision 2000, Charlotte, NC, 8–11 Aug 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dörfler .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Dörfler, P., Sick, M., Coutu, A. (2013). Periodic Effects of Runner-Casing Interaction. In: Flow-Induced Pulsation and Vibration in Hydroelectric Machinery. Springer, London. https://doi.org/10.1007/978-1-4471-4252-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4252-2_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4251-5

  • Online ISBN: 978-1-4471-4252-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics