Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1353 Accesses

Abstract

This chapter deals with the dilute side of metal-hydrogen phase diagrams (referred to as the solvus). It starts out with a review examining in general the sources of hysteresis in first-order phase transitions. From this review it is concluded that, generally, hysteresis is the result of the presence of a macroscopic energy barrier that must be overcome during phase transformation. Such a finite-sized barrier cannot be overcome by thermal fluctuations alone but, when overcome through the application of a sufficiently large externally applied thermodynamic force, results in a finite boundary movement, the energy of which is dissipated by internal entropy production. It is concluded that the internal entropy production produced by this finite phase boundary movement is the main source of hysteresis. In comparison, the earliest models of hysteresis in hydride forming metals reviewed in this chapter all assume that hysteresis is a consequence of plastic relaxation of the accommodation energy barrier during or after the phase transformation. An updated version of the accommodation energy model for hysteresis derived for the Zr–H system is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The coherency energy change is defined as the difference in energy between the constrained and stress-free states and is, therefore, always a positive quantity whist the work done is defined as the difference in energy between the final and initial states and can, therefore be either positive or negative.

References

  1. Ashby, M.F., Johnson, L.: On the generation of dislocations at misfitting particles in a ductile matrix. Philos. Mag. 20, 1009–1022 (1969)

    Article  Google Scholar 

  2. Birnbaum, H.K., Grossbeck, M.L., Amano, M.: Hydride precipitation in Nb and some properties of NbH. J. Less-Common Met. 49, 357–370 (1976)

    Article  Google Scholar 

  3. Carpenter, G.J.C.: The dilatational misfit of zirconium hydrides precipitated in zirconium. J. Nucl. Mat. 48, 264–266 (1973)

    Article  Google Scholar 

  4. Dantzer, D., Luo, W., Flanagan, T.D., et al.: Calorimetrically measured enthalpies for the reaction of H2 (g) with Zr and Zr alloys. Metall. Trans. A 24A, 1471–1479 (1993)

    Google Scholar 

  5. Erickson, W.H., Hardy, D.: The influence of alloying elements on the terminal solubility of hydrogen in α-zirconium. J. Nucl. Mater. 13, 254–262 (1964)

    Article  Google Scholar 

  6. Eshelby, J.S.: Continuum theory of defects. Prog. Solid State Phys. 3, 79–144 (1956)

    Article  Google Scholar 

  7. Flanagan, T.B., Mason, N.B., Birnbaum, H.K.: The effect of stress on hydride precipitation. Scripta Metall. 15, 109–112 (1981)

    Article  Google Scholar 

  8. Flanagan, T.B., Clewley, T., Kuji, T. et al.: Isobaric and isothermal hysteresis in metal hydrides and oxides. J. Chem. Soc., Faraday Trans. I. 82, 2589–2604 (1986)

    Google Scholar 

  9. Flanagan, T.B., Kuji, T.: Hysteresis in metal hydrides evaluated from data at constant hydrogen content: Application to palladium-hydrogen. J. Less-Common Met. 152, 213–226 (1989)

    Article  Google Scholar 

  10. Flanagan, T.B., Luo, W., Clewley, J.D.: Calorimetric enthalpies of absorption and desorption of protium and deuterium by palladium. J. Less-Common Met. 172–174, 42–55 (1991)

    Article  Google Scholar 

  11. Flanagan, T.B., Park, C.-N., Oates, W.A.: Hysteresis in solid state reactions. Prog. Solid St. Chem. 23, 291–363 (1995)

    Article  Google Scholar 

  12. Frieske, H., Wicke, E.: Magnetic susceptibility and equilibrium diagram of PdHn. Ber. Bunsenges. physik. Chem. 77, 48–52 (1973)

    Google Scholar 

  13. Grossbeck, M.L., Birnbaum, H.K.: Low temperature hydrogen embrittlement of niobium II: Microscopic observations. Acta Metall. 25, 135–147 (1977)

    Article  Google Scholar 

  14. Kearns, J.J.: Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4. J. Nucl. Mater. 22, 292–303 (1967)

    Article  Google Scholar 

  15. Kuji, T., Oates, W.A.: Thermodynamic properties of Nb-H alloys II: The β and δ phases. J. Less-Common Met. 102, 261–271 (1984)

    Article  Google Scholar 

  16. Lee, J.K., Earmme, Y.Y., Aaronson, H.I., et al.: Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: Ideal plastic behavior. Metall. Trans. A 11A, 1837–1847 (1980)

    Google Scholar 

  17. Leitch, B.W., Puls, M.P.: Finite element calculations of the accommodation energy of a misfitting precipitate in an elastic-plastic matrix. Metall. Trans. A 23A, 797–806 (1992)

    Google Scholar 

  18. Leitch, B.W., Shi, S.-Q.: Accommodation energy of formation and dissolution for a misfitting precipitate in an elastic-plastic matrix. Modelling Simul. Mater. Sci. Eng. 4, 281–292 (1996)

    Article  Google Scholar 

  19. Li, J.C.M., Oriani, R.A., Darken, L.S.: The thermodynamics of stressed solids. Z. Physik. Chem. Neue Folge 49, 271–290 (1966)

    Article  Google Scholar 

  20. Libowitz, G.G., Gibb, T.: High pressure dissociation studies of the uranium-hydrogen system. J. Phys. Chem. 61, 369–381 (1957)

    Article  Google Scholar 

  21. Lufrano, J., Sofronis, P., Birnbaum, H.K.: Elastoplastically accommodated hydride formation and embrittlement. J. Mech. Phys. Solids 46, 1497–1520 (1998)

    Article  MATH  Google Scholar 

  22. Lufrano, J., Sofronis, P.: Micromechanics of hydride formation and cracking in zirconium alloys. Comput. Modell. Eng. Sci. (CMES) 1, 119–131 (2000)

    Google Scholar 

  23. Oates, W.A., Flanagan, T.B.: The solubility of hydrogen in transition metals and their alloys. Prog. Solid St. Chem. 13, 193–283 (1981)

    Article  Google Scholar 

  24. Pan, Z.L., Ritchie, I.G., Puls, M.P.: The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys. J. Nucl. Mater. 228, 227–237 (1996)

    Article  Google Scholar 

  25. Papaconstantopolis, K., Wenzl, H.: Pressure-composition isotherms of hydrogen and deuterium in vanadium films measured with a vibrating quartz microbalance. J. Phys. F. 12, 341–360 (1982)

    Google Scholar 

  26. Paton, N.E., Hickman, B.S., Leslie, D.H.: Behavior of hydrogen in α-phase Ti-Al alloys. Metall. Trans. 2, 2791–2796 (1971)

    Article  Google Scholar 

  27. Puls, M.P., Leitch, B.W., Shi, S.Q.: The effect of applied stress on the accommodation energy and solvi for the formation and dissolution of zirconium hydride. In: Moody, N.F., Thompson, A.W., Richer, R.E. et al. (eds.) Hydrogen Effects on Material Behaviour and Corrosion Deformation Interactions, pp. 233–248. TMS (The Minerals, Metals and Materials Society) (2003)

    Google Scholar 

  28. Puls, M.P.: The effects of misfit and external stresses on terminal solid solubility in hydride-forming metals. Acta Metall. 29, 1961–1968 (1981)

    Article  Google Scholar 

  29. Puls, M.P.: Elastic and plastic accommodation effects on metal-hydride solubility. Acta Metall. 32, 1259–1269 (1984)

    Article  Google Scholar 

  30. Puls, M.P.: On the consequences of hydrogen supersaturation effects in Zr alloys to hydrogen ingress and delayed hydride cracking. J. Nucl. Mater. 165, 128–141 (1989)

    Article  Google Scholar 

  31. Puls, M.P.: Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking. Metall. Trans. A 21A, 2905–2917 (1990)

    Google Scholar 

  32. Puls, M.P.: Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys. J. Nucl. Mater. 393, 350–367 (2009)

    Article  Google Scholar 

  33. Prigogene, I, Defay, R.: Chemical Thermodynamics. Longmans, Green and Co., London, UK (1954)

    Google Scholar 

  34. Salzbrenner, R., Cohen, M.: On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 27, 739–748 (1979)

    Article  Google Scholar 

  35. Salomons, E., Feenstra, R., Degroot, D., et al.: Pressure-composition isotherms of thin PdHc films. J. Less-Common Met. 130, 415–420 (1987)

    Article  Google Scholar 

  36. Schultus, N., Hall, W.: Hysteresis in the palladium-hydrogen system. J. Chem. Phys. 39, 868–870 (1963)

    Article  Google Scholar 

  37. Slattery, G.F.: The terminal solubility of hydrogen in zirconium alloys between 30°C and 400°C. J. Inst. Metals 95, 43–47 (1967)

    Google Scholar 

  38. Torra, V., Tachoire, H.: Martensitic transformations in shape-memory alloys. Successes and failures of thermal analysis and calorimetry. Thermochim. Acta 203, 419–444 (1992)

    Article  Google Scholar 

  39. Westlake, D.G.: A generalized model for hydrogen embrittlement. Trans. ASM 62, 1000–1006 (1969)

    Google Scholar 

  40. Westlake, D.G.: Mechanical behavior of niobium (columbium)—hydrogen alloys. Trans. TMS-AIME 245, 287–292 (1969)

    Google Scholar 

  41. Wicke, E., Otto, K.: Über das System Uran-Wasserstoff und die Kinetik der Uranhydrid bildung. Z. Physik. Chem. Neue Folge 31, 222–248 (1962)

    Article  Google Scholar 

  42. Wiswall, R.H.: Hydrogen storage in metals. In: Alefeld, G., Völkl, J. (eds.) Hydrogen in Metals I. Application-Oriented Properties, Springer, Berlin (1978)

    Google Scholar 

  43. Zuzek, E., Abriata, J.P., San-Martin, A. et al.: H-Zr (Hydrogen-Zirconium) In: Phase Diagrams of Binary Hydrogen Alloys, pp. 309–322. ASM International, Materials Park, Ohio (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred P. Puls .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Puls, M.P. (2012). Characteristics of the Solvus. In: The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components. Engineering Materials. Springer, London. https://doi.org/10.1007/978-1-4471-4195-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4195-2_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4194-5

  • Online ISBN: 978-1-4471-4195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics