Skip to main content

The Basic Theory and Constitutive Equation of High-Strength Steel for Hot Forming

  • Chapter
  • First Online:
Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 2622 Accesses

Abstract

The first part of this book briefly describes the basic principle of high-strength steel for hot stamping technology. The special boron alloy steel is heated to make the austenitic change. Then the red-hot sheet metal is put into a mold with cooling system to form. At the same time, it is quenched by mold and the steel plate organization transforms from austenite into martensite . Thus, the high strength structure of car is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koistien DP (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60

    Article  Google Scholar 

  2. Greenwood GW, Johnson RH (1965) The deformation of metals under small stresses during phase transformations. Proc R Soc Lond 283:403–422

    Article  Google Scholar 

  3. Denis S, Gautier E, Simon A et al (1985) Stress-phase transformation interactions—basic principles, modelling and calculation of internal stresses. Mater Sci Technol 1:805–814

    Article  Google Scholar 

  4. Lomakin VA (1958) Transformation of austenite under nonisothermal cooling. Mech Mach 2:20–25

    Google Scholar 

  5. Kakeshita T, Wayman CM (1991) Martensitic transformation in cermets with metastable austenitic binder: II. TiC-Fe-Ni-C. Mater Sci Eng A 147(1):85–92

    Article  Google Scholar 

  6. Kakeshita T, Fukuda T, Saburi T (2000) Time-dependent nature and origin of displacive transformation. Sci Technol Adv Mater 1(1):63–72

    Article  Google Scholar 

  7. Porter DA, Easterling KE (1981) Phase transformations in metals and alloys. Van Nostrand Reinhold Co., New York

    Google Scholar 

  8. Frank FC (1951) Capillary equilibria of dislocated crystals. Acta Crystallogr A 4:497–501

    Article  Google Scholar 

  9. Fraunberger F, Klement EZ (1962) Theorie der mehrphasentransformatoren mit anwendungsbeispielen. Z Metallk 53:612–614

    Google Scholar 

  10. Sinclair R (1978) Lattice imaging study of a martensite-austenite interface. Acta Metall 26(4):623–628

    Article  MathSciNet  Google Scholar 

  11. Brooks JW, Loretto MH, Smailman RE (1979) In situ observations of the formation of martensite in stainless steel. Acta Metall 27(2):1829–1838

    Article  Google Scholar 

  12. Hsu TY (2006) Martensitic transformation under stress. Mater Sci Eng, A 438:64–68

    Article  Google Scholar 

  13. Leblond JB, Mottet G, Devaux JC (1986) A theoretical and numerical approach to the plastic behaviour of steels during phase transformations-ii. study of classical plasticity for ideal-plastic phases. J Mech Phys Solids 34(4):411–432

    Article  Google Scholar 

  14. Petit-Grostabussiat S, Taleb L, Jullien JF (2004) Experimental results on classical plasticity of steels subjected to structural transformations. Int J Plast 20:1371–1386

    Article  MATH  Google Scholar 

  15. Ma N, Hu P, Shen GZ et al (2010) Modeling, testing and numerical simulation on hot forming. AIP conference proceedings, plenary lecture of NUMIFORM2010, pp 18–27

    Google Scholar 

  16. Karbasian H, Brosius A, Tekkaya AE et al (2008) numerical process design of hot stamping processes based on verified thermo-mechanical characteristics, materials science and technology, pp 1733–1743

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Hu, P., Ma, N., Liu, Lz., Zhu, YG. (2013). The Basic Theory and Constitutive Equation of High-Strength Steel for Hot Forming . In: Theories, Methods and Numerical Technology of Sheet Metal Cold and Hot Forming. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-4471-4099-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4099-3_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4098-6

  • Online ISBN: 978-1-4471-4099-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics