Skip to main content

Abstract

Active 3D imaging systems use artificial illumination in order to capture and record digital representations of objects. The use of artificial illumination allows the acquisition of dense and accurate range images of textureless objects that are difficult to acquire using passive vision systems. An active 3D imaging system can be based on different measurement principles that include time-of-flight, triangulation and interferometry. While time-of-flight and interferometry systems are briefly discussed, an in-depth description of triangulation-based systems is provided. The characterization of triangulation-based systems is discussed using both an error propagation framework and experimental protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A linear spot detector can be conceptually viewed as a conventional camera that has a singe row of pixels. Many linear spot detectors have been proposed in the past for 3D imaging [11].

  2. 2.

    The rotation matrix representing a rotation of θ around an axis [a,b,c]T of unit magnitude is

    $$\mathsf {R}_{\theta} = \begin{bmatrix} a^2(1-\cos\theta)+\cos\theta & a b (1- \cos\theta) - c \sin\theta & a c(1 - \cos\theta) + b \sin\theta\\ a b (1 - \cos\theta)+ c \sin\theta & b^2 (1-\cos\theta) + \cos \theta & b c(1 - \cos\theta) - a \sin\theta\\ a c (1 - \cos\theta) - b \sin\theta& b c (1- \cos\theta) + a \sin \theta& c^2 (1-\cos\theta)+\cos\theta \end{bmatrix} . $$
  3. 3.

    Fringe projection systems are a subset of structured light systems, but we use the two terms somewhat interchangeably in this chapter.

  4. 4.

    A confidence interval is an interval within which we are (1−α)100 % confident that a point measured under the presence of Gaussian noise (of known mean and variance) will be within this interval (we use α=0.05).

  5. 5.

    www.innovmetric.com.

References

  1. ISO Guide 98-3: Uncertainty of Measurement Part 3: Guide to the Expression of Uncertainty in Measurement (gum 1995) (1995)

    Google Scholar 

  2. VDI 2634: Part 2: Optical 3-d Measuring Systems Optical System Based on Area Scanning (2002)

    Google Scholar 

  3. VDI 2617: Part 6.2: Accuracy of Coordinate Measuring Machines Characteristics and Their Testing Guideline for the Application of DIN EN ISO 10360 to Coordinate Measuring Machines with Optical Distance Sensors. Beuth Verlag GmbH (2005)

    Google Scholar 

  4. ANSI z136: Part 1–6: American National Standard for Safe Use of Lasers (2007)

    Google Scholar 

  5. CGM 200:2008: International Vocabulary of Metrology Basic and General Concepts and Associated Terms (VIM) (2008)

    Google Scholar 

  6. ASTM e2544-10: Standard Terminology for Three-Dimensional (3d) Imaging Systems (2010)

    Google Scholar 

  7. Amann, M.C., Bosch, T., Lescure, M., Myllylä, R., Rioux, M.: Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng. 40(1), 10–19 (2001)

    Article  Google Scholar 

  8. Baribeau, R., Rioux, M.: Influence of speckle on laser range finders. Appl. Opt. 30(20), 2873–2878 (1991)

    Article  Google Scholar 

  9. Benoit, P., Mathieu, E., Hormire, J., Thomas, A.: Characterization and control of three-dimensional objects using fringe projection techniques. Nouv. Rev. Opt. 6(2), 67–86 (1975)

    Article  Google Scholar 

  10. Beraldin, J.A., Blais, F., Lohr, U.: Laser scanning technology. In: Vosselman, G., Mass, H.-G. (eds.) Airborne and Terrestrial Laser Scanning. Whittles Publishers, Dunbeath (2010)

    Google Scholar 

  11. Beraldin, J.A., Blais, F., Rioux, M., Domey, J., Gonzo, L., Nisi, F.D., Comper, F., Stoppa, D., Gottardi, M., Simoni, A.: Optimized position sensors for flying-spot active triangulation systems. In: Proc. Int. Conf. 3D Digital Imaging and Modeling, pp. 29–36 (2003)

    Google Scholar 

  12. Beraldin, J.A., El-Hakim, S.F., Cournoyer, L.: Practical range camera calibration. In: Videometrics. SPIE Proceedings, vol. II, pp. 21–31 (1993)

    Google Scholar 

  13. Beraldin, J.A., Rioux, M., Blais, F., Godin, G., Baribeau, R.: Model-Based Calibration of a Range Camera (1992)

    Google Scholar 

  14. Besl, P.J.: Active, optical range imaging sensors. Mach. Vis. Appl. 1(2), 127–152 (1988)

    Article  Google Scholar 

  15. Blahut, R.E.: Theory of Remote Image Formation. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  16. Blais, F.: Review of 20 years of range sensor development. J. Electron. Imaging 13(1), 231–243 (2004)

    Article  Google Scholar 

  17. Blais, F., Beraldin, J.A.: Recent developments in 3d multi-modal laser imaging applied to cultural heritage. Mach. Vis. Appl. 17(3), 395–409 (2006)

    Article  Google Scholar 

  18. Blais, F., Rioux, M.: Real-time numerical peak detector. Signal Process. 11(2), 145–155 (1986)

    Article  Google Scholar 

  19. Boehler, W., Marbs, A.: Investigating scanner accuracy. Tech. rep, German University FH, Mainz (2003)

    Google Scholar 

  20. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  21. Bosch, T., Lescure, M. (eds.): Selected Papers on Laser Distance Measurements, vol. 115. SPIE Milestone Series (1995). B.J. Thompson (General editor)

    Google Scholar 

  22. Breuckmann: GmbH: Projector for an arrangement for three-dimensional optical measurement of object. United State Patent Office 7532332 (2009)

    Google Scholar 

  23. Brown, D.: Decentering distortion of lenses. Photom. Eng. 32(3), 444–462 (1966)

    Google Scholar 

  24. Brownhill, A., Brade, R., Robson, S.: Performance study of non-contact surface measurement technology for use in an experimental fusion device. In: 21st Annual IS&T/SPIE Symposium on Electronic Imaging (2009)

    Google Scholar 

  25. Bumbaca, F., Blais, F.: Real-time correction of three-dimensional non-linearities for a laser range finder. Opt. Eng. (1986)

    Google Scholar 

  26. Carrier, B., Mackinnon, D., Cournoyer, L., Beraldin, J.A.: Proposed NRC portable target case for short-range triangulation-based 3-d imaging systems characterization. In: 23st Annual IS&T/SPIE Symposium on Electronic Imaging (2011)

    Google Scholar 

  27. Cox, M.G., Siebert, B.R.L.: The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty. Metrologia 43(4), S178 (2006)

    Article  Google Scholar 

  28. Criminisi, A.: Accurate Visual Metrology from Single and Multiple Uncalibrated Images. Springer, New York (2001)

    Book  MATH  Google Scholar 

  29. Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: A unifying framework for depth from triangulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 296–302 (2005)

    Article  Google Scholar 

  30. Dorsch, R.G., Häusler, G., Herrmann, J.M.: Laser triangulation: fundamental uncertainty in distance measurement. Appl. Opt. 33(7), 1306–1314 (1994)

    Article  Google Scholar 

  31. Dorsch, R.G., Häusler, G., Herrmann, J.M.: Fourier-transform method of phase-shift determination. Appl. Opt. 40(17), 2886–2894 (2001)

    Article  Google Scholar 

  32. Drouin, M.A.: Mise en correspondance active et passive pour la vision par ordinateur multivue. Université de Montréal (2007)

    Google Scholar 

  33. Drouin, M.A., Blais, F.: Method and System for Alleviating the Discretization and Inter-Pixel Gaps Effect of a Digital Fringe Projection System (2011). United State Patent Office 13/108,378 (Application)

    Google Scholar 

  34. Fisher, R.B., Naidu, D.K.: A comparison of algorithms for subpixel peak detection. In: Image Technology, Advances in Image Processing, Multimedia and Machine Vision, pp. 385–404. Springer, Berlin (1996)

    Google Scholar 

  35. Forbes, A.B., Hughes, B., Sun, W.: Comparison of measurements in co-ordinate metrology. Measurement 42(10), 1473–1477 (2009)

    Article  Google Scholar 

  36. Forsen, G.: Processing visual data with an automaton eye. In: Pictorial Pattern Recognition, pp. 471–502 (1968)

    Google Scholar 

  37. Ghiglia, D.C., Pritt, M.D.: Two-Dimensional Phase Unwrapping Theory, Algorithms ans Software. Wiley, New York (1998)

    Google Scholar 

  38. Goesele, M., Fuchs, C., Seidel, H.P.: Accuracy of 3d range scanners by measurement of the slanted edge modulation transfer function. In: International Conference on 3D Digital Imaging and Modeling, vol. 37 (2003)

    Google Scholar 

  39. Gray, F.: Pulse code communication. United State Patent Office 2632058 (1953)

    Google Scholar 

  40. Hibino, K.: Susceptibility of systematic error-compensating algorithms to random noise in phase-shifting interferometry. Appl. Opt. 36(10), 2084–2093 (1997)

    Article  Google Scholar 

  41. Inokuchi, S., Sato, K., Matsuda, F.: Range imaging system for 3-D object recognition. In: Proc. Int. Conf. Pattern Recognition, pp. 806–808 (1984)

    Google Scholar 

  42. Inspect, Inc.: Optional 3d digitizer, system and method for digitizing an object. United State Patent Office 6493095 (2002)

    Google Scholar 

  43. Jahne, B., Haussecker, H.W., Geissler, P.: Handbook of Computer Vision and Applications. 1. Sensors and Imaging. Academic Press, San Diego (1999)

    Google Scholar 

  44. Kanade, T. (ed.): Three-Dimensional Machine Vision. Kluwer Academic, Norwell (1987)

    Google Scholar 

  45. Leach, R. (ed.): Optical Measurement of Surface Topography. Springer, Berlin (2011)

    Google Scholar 

  46. Luhmann, T., Bethmann, F., Herd, B., Ohm, J.: Comparison and verification of optical 3-d surface measurement systems. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, Part B5, Beijing (2008)

    Google Scholar 

  47. MacKinnon, D., Aitken, V., Blais, F.: Review of measurement quality metrics for range imaging. J. Electron. Imaging 17 (2008)

    Google Scholar 

  48. Naidu, K., Fisher, R.B.: A comparative analysis of algorithms for determining the peak position of a stripe to sub-pixel accuracy. In: Proc. British Machine Vision Conf. (1991)

    Google Scholar 

  49. Newhall, B.: Photosculture. Image: Journal of Photography and Motion Pictures of the George Eastman House 7(5), 100–105 (1958)

    Google Scholar 

  50. Nitzan, D.: Three-dimensional vision structure for robot applications. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 291–309 (1988)

    Article  Google Scholar 

  51. Ohyama, N., Kinoshita, S., Cornejo-Rodriguez, A., Tsujiuchi, J.: Accuracy of phase determination with unequal reference phase shift. J. Opt. Soc. Am. A 12(9), 1997–2008 (1995)

    Article  Google Scholar 

  52. Rathjen, C.: Optical Shop Testing. Wiley, New York (1978). Edited by Malacara

    Google Scholar 

  53. Rathjen, C.: Statistical properties of phase-shift algorithms. J. Opt. Soc. Am. A 12(9), 1997–2008 (1995)

    Article  Google Scholar 

  54. Rioux, M.: Laser range finder based on synchronized scanners. Appl. Opt. 23(21), 3837–3855 (1984)

    Article  Google Scholar 

  55. Rioux, M., Taylor, D., Duggan, M.: Design of a large depth of view three-dimensional camera for robot vision. Opt. Eng. 26(12), 1245–1250 (1987)

    Google Scholar 

  56. Robson, S., Beraldin, A., Brownhill, A., MacDonald, L.: Artefacts for optical surface measurement. In: Society of Photo-Optical Instrumentation & Electronics & Society for Imaging Science and Technology, in Videometrics, Range Imaging, and Applications XI (2011)

    Google Scholar 

  57. Salvi, J., Pages, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognit. 37(4), 827–849 (2004)

    Article  MATH  Google Scholar 

  58. Sansoni, G., Patrioli, A.: Noncontact 3d sensing of free-form complex surfaces. In: Proc. SPIE, vol. 4309 (2001)

    Google Scholar 

  59. Seitz, P.: Photon-noise limited distance resolution of optical metrology methods. In: Optical Measurement Systems for Industrial Inspection V. Proceedings of SPIE, vol. 6616 (2007)

    Google Scholar 

  60. Singer, C.J., Williams, T.I., Raper, R.: A History of Technology. Clarendon Press, Oxford (1954)

    Google Scholar 

  61. Smith, W.J.: Modern Optical Engineering, 3rd edn. McGraw-Hill, New York (2000)

    Google Scholar 

  62. Surrel, Y.: Additive noise effect in digital phase detection. Appl. Opt. 36(1), 271–276 (1994)

    Article  Google Scholar 

  63. Trobina, M.: Error model of a coded-light range sensor. Tech. Rep. BIWI-TR-164, ETH-Zentrum (1995)

    Google Scholar 

  64. Will, P.M., Pennington, K.S.: Grid coding: a novel technique for image processing. Proc. IEEE 60(6), 669–680 (1972)

    Article  Google Scholar 

  65. Willéme, F.: Photo-sculpture. United State Patent Office 43822 (1864)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc-Antoine Drouin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Her Majesty the Queen in Right of Canada

About this chapter

Cite this chapter

Drouin, MA., Beraldin, JA. (2012). Active 3D Imaging Systems. In: Pears, N., Liu, Y., Bunting, P. (eds) 3D Imaging, Analysis and Applications. Springer, London. https://doi.org/10.1007/978-1-4471-4063-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4063-4_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4062-7

  • Online ISBN: 978-1-4471-4063-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics