Skip to main content

Biochemical Pathologies of Zinc Deficiency

  • Chapter
Zinc in Human Biology

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

Todd et al. (1934) were the first to demonstrate that zinc was an essential component in the diet of mammals. Since then, it has been shown that animals which consume zinc-deficient diets eventually develop a variety of pathologies including anorexia, growth retardation, abnormal immune function, abnormal nitrogen metabolism, hypogeusia, impaired reproductive capacity, coarse and sparse hair growth, flaking seborrhoea of the skin, impaired connective tissue metabolism and behavioural defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auld DS, Kawaguchi H, Livingston DM, Vallee BL (1975) RNA-dependent DNA polymerase (reverse transcriptase) from avian myeloblastosis virus: a zinc metalloenzyme. Proc Natl Acad Sci USA 71: 2091–2094

    Article  Google Scholar 

  • Bakan R (1979) The role of zinc in anorexia nervosa: etiology and treatment. Med Hypotheses 5: 731–736

    Article  PubMed  CAS  Google Scholar 

  • Beach RS, Gershwin ME, Hurley LS (1979) Altered thymic structure and mitogen responsiveness in postnatally zinc-deprived mice. Dev Comp Immunol 3: 725–738

    Article  PubMed  CAS  Google Scholar 

  • Beach RS, Gershwin ME, Hurley LS (1980a) Growth and development in postnatally zinc deprived mice. J Nutr 110: 201–211

    PubMed  CAS  Google Scholar 

  • Beach RS, Gershwin ME, Makishima RK, Hurley LS (1980b) Impaired immunologic ontogeny in postnatal zinc deprivation. J Nutr 110: 805–815

    PubMed  CAS  Google Scholar 

  • Berg JM (1986) Potential metal-binding domains in nucleic acid binding proteins. Science 232: 485–486

    Article  PubMed  CAS  Google Scholar 

  • Bergman B, Friberg U, Lohmander S, Oberg T (1970) Morphologic and autoradiographic observations on the effect of zinc deficiency on endochondral growth sites in the white rat. Odontol Rev 21: 379–389

    CAS  Google Scholar 

  • Bergman B, Friberg U, Lohmander S, Oberg T (1972) The importance of zinc to cell proliferation in endochondral growth sites in the white rat. Scand J Dent Res 80: 486–492

    PubMed  CAS  Google Scholar 

  • Bettger WJ, Fish TJ, O’Dell BL (1978) Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity. Proc Soc Exp Biol Med 158: 279–282

    PubMed  CAS  Google Scholar 

  • Bettger WJ, Wong LH, Paterson PG (1986) Effect of environmental temperature on food intake and deficiency signs in rats fed zinc-deficient diets. Nutr Behav 3: 241–249

    CAS  Google Scholar 

  • Burke JP, Fenton MR, Miller ML, Tursi FD (1981) The effect of a zinc-deficient diet and the inflammatory response on rat liver mitochondrial protein synthesis. Biochem Med 25: 48–55

    Article  PubMed  CAS  Google Scholar 

  • Castro CE (1987) Nutrient effects on DNA and chromatin structure. Ann Rev Nutr 7: 407–421

    Article  CAS  Google Scholar 

  • Castro CE, Alvares OF, Sevall J (1986a) Zinc deficiency decreases histone Hl° in rat liver. Nutr Rep Intl 34: 67–74

    CAS  Google Scholar 

  • Castro CE, Armstrong-Major J, Ramirez ME (1986b) Diet-mediated alteration of chromatin structure. Fed Proc 45: 2394–2398

    PubMed  CAS  Google Scholar 

  • Chesters JK, Quarterman J (1970) Effects of zinc deficiency on food intake and feeding patterns of rats. Br J Nutr 24: 1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Chesters JK, Will M (1973) Some factors controlling food intake by zinc-deficient rats. Br J Nutr 30: 555

    Article  PubMed  CAS  Google Scholar 

  • Chesters JK, Will M (1978) Effect of age, weight and adequacy of zinc intake on the balance between alkaline ribonuclease and ribonuclease inhibitor in various tissues of the rat. Br J Nutr 39: 375

    Article  PubMed  CAS  Google Scholar 

  • Chvapil M (1973) New aspects in the biological role of zinc: a stabilizer of macromolecules and biological membranes. Life Sci 13: 1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Clegg MS, Rogers JM, Zucker RM, Hurley LS, Keen CL (1986) Flow cytometry analysis of cell cycle stages in zinc deficient fetal rat brain. Fed Proc 45: 1086

    Google Scholar 

  • Diamond I, Hurley LS (1970) Histopathology of zinc-deficient fetal rats. J Nutr 100: 325–329

    PubMed  CAS  Google Scholar 

  • Diamond I, Swenerton H, Hurley LS (1971) Testicular and esophageal lesions in zinc-deficient rats and their reversibility. J Nutr 101: 77–84

    PubMed  CAS  Google Scholar 

  • Dreosti IE (1987) Micronutrients, superoxide and the fetus. Neurotoxicology 8: 445–450

    PubMed  CAS  Google Scholar 

  • Dreosti IE, Hurley LS (1975) Depressed thymidine kinase activity in zinc-deficient rat embryos. Proc Soc Exp Biol Med 150: 161–165

    PubMed  CAS  Google Scholar 

  • Dreosti IE, Grey PC, Wilkins PJ (1972) Deoxyribonucleic acid synthesis, protein synthesis and teratogenesis in zinc-deficient rats. S Afr Med J 46: 1585–1588

    PubMed  CAS  Google Scholar 

  • Dreosti IE, Record IR, Manuel SJ (1980) Incorporation of 3H-thymidine into DNA and the activity of alkaline phosphatase in zinc-deficient fetal rat brains. Biol Trace Element Res 2: 21–29

    Article  CAS  Google Scholar 

  • Dreosti IE, Record IR, Manuel SJ (1985) Zinc deficiency and the developing embryo. Biol Trace Element Res 7: 103–122

    Article  CAS  Google Scholar 

  • Duerre JA, Wallwork JC (1986) Methionine metabolism in isolated perfused livers from rats fed zinc-deficient and restricted diets. Br J Nutr 56: 395–405

    Article  PubMed  CAS  Google Scholar 

  • Duerre JA, Ford KM, Sandstead HH (1977) Effect of zinc deficiency on protein synthesis in brain and liver of suckling rats. J Nutr 107: 1082–1093

    PubMed  CAS  Google Scholar 

  • Duncan JR, Dreosti IE (1974) The effect of zinc deficiency on the timing of deoxyribonucleic acid synthesis in regenerating rat liver. S Afr Med J 48: 1697–1699

    PubMed  CAS  Google Scholar 

  • Duncan JR, Hurley LS (1978) Thymidine kinase and DNA polymerase activity in normal and zinc deficient developing rat embryos. Proc Soc Exp Biol Med 159: 39–43

    PubMed  CAS  Google Scholar 

  • Ecker RI, Schroeter AL (1978) Acrodermatitis and acquired zinc deficiency. Arch Dermatol 114: 937–939

    Article  PubMed  CAS  Google Scholar 

  • Eckhert CD, Hurley LS (1977) Reduced DNA synthesis in zinc deficiency: regional differences in embryoniç rats. J Nutr 107: 855–861

    PubMed  CAS  Google Scholar 

  • Essatara M’B, Levine AS, Morley JE, McClain CJ (1984) Zinc deficiency and anorexia in rats: normal feeding patterns and stress induced feeding. Physiol Behav 32: 469–474

    Article  Google Scholar 

  • Falchuk KH, Krishan A, Vallee BL (1975) DNA distribution in the cell cycle of Euglena gracilis. Cytofluorometry of zinc deficient cells. Biochemistry 14: 3439–3444

    CAS  Google Scholar 

  • Falchuk KH, Hardy C, Ulpino L, Vallee BL (1978) RNA metabolism, manganese, and RNA polymerases of zinc-sufficient and zinc-deficient Euglena gracilis. Proc Natl Acad Sci USA 75: 4175–4179

    Article  PubMed  CAS  Google Scholar 

  • Falchuk KH, Mazus B, Ber E, Ulpino-Lobb L, Vallee BL (1985) Zinc deficiency and the Euglena gracilis chromatin: formation of an α-amanitin-resistant RNA polymerase II. Biochemistry 24: 2576–2580

    Article  PubMed  CAS  Google Scholar 

  • Falchuk KH, Gordon PR, Stankiewicz A, Hilt KL, Vallee BL (1986) Euglena gracilis chromatin: comparison of effects of zinc, iron, magnesium, or manganese deficiency and cold shock. Biochemistry 25: 5388–5391

    Article  PubMed  CAS  Google Scholar 

  • Fazakerley GV (1984) Zinc Z-DNA. Nucleic Acids Res 12: 3643–3648

    Article  CAS  Google Scholar 

  • Fernandez-Madrid F, Prasad AS, Oberleas D (1973) Effect of zinc deficiency on nucleic acids, collagen, and noncollagenous protein of the connective tissue. J Lab Clin Med 82: 911–916

    Google Scholar 

  • Flanagan PR (1984) A model to produce pure zinc deficiency in rats and its use to demonstrate that dietary phytate increases the excretion of endogenous zinc. J Nutr 114: 493–502

    PubMed  CAS  Google Scholar 

  • Follis RH Jr, Day HG, McCollum EV (1941) Histologic studies of the tissues of rats fed a diet extremely low in zinc. J Nutr 22: 223–233

    CAS  Google Scholar 

  • Fosmire GJ, Fosmire MA, Sandstead HH (1976) Zinc deficiency in the weanling rat: effects on liver composition and polysomal profiles. J Nutr 106: 1152–1158

    PubMed  CAS  Google Scholar 

  • Fraker PJ, Hildebrandt K, Luecke KW (1984) Alteration of antibody-mediated responses of suckling mice to T-cell dependent and independent antigens by maternal zinc deficiency: restoration, of responsivity by nutritional repletion. J Nutr 114: 170–177

    PubMed  CAS  Google Scholar 

  • Fujii T (1954) Presence of zinc in nucleoli and its possible role in mitosis. Nature 174: 1108–1109

    Article  PubMed  CAS  Google Scholar 

  • Fujioka M, Lieberman I (1964) A Zn++ requirement for synthesis of deoxyribonucleic acid by rat liver. J Biol Chem 239: 1164–1167

    PubMed  CAS  Google Scholar 

  • Giugliano R, Millward DJ (1987) The effects of severe zinc deficiency on protein turnover in muscle and thymus. Br J Nutr 57: 139–155

    Article  PubMed  CAS  Google Scholar 

  • Golden BE, Golden MHN (1981a) Plasma zinc, rate of weight gain, and energy cost of tissue deposition in children recovering from severe malnutrition on a cow’s milk or soya protein based diet. Am J Clin Nutr 34: 892–899

    PubMed  CAS  Google Scholar 

  • Golden BE, Golden MHN (1985) Effect of zinc supplementation on the composition of newly synthesized tissue in children recovering from malnutrition. Proc Nutr Soc 44: 110A

    Google Scholar 

  • Golden MHN, Golden BE (1981b) Effects of zinc supplementation on dietary intake, rate of weight gain, and energy cost of tissue deposition in children recovering from severe malnutrition. Am J Clin Nutr 34: 900–908

    PubMed  CAS  Google Scholar 

  • Gonzalez JR, Vazquez Botet M, Sanchez JL (1982) The histopathology of acrodermatitis enteropathica. Am J Dermatol 4: 303–311

    Article  CAS  Google Scholar 

  • Grey PC, Dreosti IE (1972) Deoxyribonucleic acid and protein metabolism in zinc-deficient rats. J Comp Pathol 82: 223–228

    Article  PubMed  CAS  Google Scholar 

  • Gupta RP, Verma PC, Gupta PRK (1985) Experimental zinc deficiency in guinea pigs: clinical signs and some haematological studies. Br J Nutr 54: 421–428

    Article  PubMed  CAS  Google Scholar 

  • Halas ES, Wallwork JC, Sandstead HH (1982) Mild zinc deficiency and undernutrition during prenatal and postnatal periods in rats: effects on weight, food consumption, and brain catecholamine levels. J Nutr 112: 542–551

    PubMed  CAS  Google Scholar 

  • Halsted JA, Ronaghy HA, Abadi P et al. (1972) Zinc deficiency in man. Am J Med 53: 277–284

    Article  PubMed  CAS  Google Scholar 

  • Hambidge KM, Casey CE, Krebs NF ( 1986 ) Zinc. In: Mertz W (ed) Trace elements in human and animal nutrition, vol 2. Academic Press, Orlando San Diego New York Austin London Montreal Sydney Tokyo Toronto, pp 1–137

    Chapter  Google Scholar 

  • Hanas JS, Hazuda DJ, Bogenhagen DF, Wu FY-H, Wu C-W (1983) Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. J Biol Chem 258: 14120–14125

    PubMed  CAS  Google Scholar 

  • Hanas JS, Hazuda DJ, Wu C-W (1985) Xenopus transcription factor A promotes DNA reassociation. J Biol Chem 260: 13316–13320

    PubMed  CAS  Google Scholar 

  • Hesketh JE (1981) Impaired microtubule assembly in brain from zinc deficient pigs and rats. Int J Biochem 13: 921–926

    Article  PubMed  CAS  Google Scholar 

  • Hicks SE, Wallwork JC (1987) Effect of dietary zinc deficiency on protein synthesis in cell-free systems isolated from rat liver. J Nutr 117: 1234–1240

    PubMed  CAS  Google Scholar 

  • Hsu JM, Anthony WL (1975) Effect of zinc deficiency on urinary excretion of nitrogenous compounds and liver amino acid-catabolizing enzymes in rats. J Nutr 105: 26–31

    CAS  Google Scholar 

  • Hsu JM, Woosley RL (1972) Metabolism of L-methionine- 35S in zinc-deficient rats. J Nutr 102: 1181–1186

    PubMed  CAS  Google Scholar 

  • Hsu JM, Anthony WL, Buchanan PJ (1969) Zinc deficiency and incorporation of 4C-labeled methionine into tissue proteins in rats. J Nutr 99: 425–432

    PubMed  CAS  Google Scholar 

  • Hurley LS (1981) Teratogenic aspects of manganese, zinc, and copper nutrition. Physiol Rev 61: 249–295

    PubMed  CAS  Google Scholar 

  • Hurley LS, Shrader RE (1972) Congenital malformations of the nervous system in zinc-deficient rats. Int Rev Neurobiol [Suppl] 1: 7–51

    CAS  Google Scholar 

  • Igo-Kemenes T, Hörz W, Zachau HG (1982) Chromatin. Annu Rev Biochem 51: 89–121

    Article  PubMed  CAS  Google Scholar 

  • Kasarskis EJ, Sparks DL, Slevin JT (1986) Changes in hypothalamic noradrenergic systems during the anorexia of zinc deficiency. Biol Trace Element Res 9: 25–35

    Article  CAS  Google Scholar 

  • Katz RL, Keen CL, Litt IF, Hurley LS, Kellams-Harrison KM, Glader LJ (1987) Zinc deficiency in anorexia nervosa. J Adolesc Health Care 8: 400–406

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto JC, Castonguay TW, Keen CL, Stern JS, Hurley LS (1986) Age, sex and reproductive status alter the severity of anorexia in zinc deficient rats. Physiol Behav 38: 485–493

    Article  PubMed  CAS  Google Scholar 

  • Klug A, Rhodes D (1987) “Zinc fingers”: a novel protein motif for nucleic acid recognition. TIBS 12: 464–469

    Google Scholar 

  • Kvist U, Björndahl L (1985) Zinc preserves an inherent capacity for human sperm chromatin decondensation. Acta Physiol Scand 124: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Leung PMB, Rogers QR, Harper AE (1968) Effect of amino acid imbalance on dietary choice in the rat. J Nutr 95: 482–492

    Google Scholar 

  • Leung PMB, Larson DM, Rogers QR (1986) Influence of taste on dietary choice of rats fed amino acid imbalanced or deficient diets. Physiol Behav 38: 255–264

    Article  PubMed  CAS  Google Scholar 

  • Lieberman I, Ove P (1962) Deoxyribonucleic acid synthesis and its inhibition in mammalian cells cultured from the animal. J Biol.Chem 237: 1634–1642

    PubMed  CAS  Google Scholar 

  • Lieberman I, Abrams R, Hunt N, Ove. P (1963) Levels of enzyme activity and deoxyribonucleic acid synthesis in mammalian cells cultured from the animal. J Biol Chem 238: 3955–3962

    PubMed  CAS  Google Scholar 

  • Macapinlac MP, Pearson WN, Barney GH, Darby WJ (1968) Protein and nucleic acid metabolism in the testes of zinc-deficient rats. J Nutr 95: 569–577

    CAS  Google Scholar 

  • Mazus B, Falchuk KH, Vallee BL (1984) Histone formation, gene expression, and zinc deficiency in Euglena gracilis. Biochemistry 23: 42–47

    Article  PubMed  CAS  Google Scholar 

  • Miller JA, McLachlan D, Klug A (1985) Repetitive zinc-binding domains in the protein transcriptive factor ILIA from Xenopus oocytes. EMBO J 4: 1609–1614

    PubMed  CAS  Google Scholar 

  • Miller WJ (1970), Zinc nutrition in cattle: a review. J Dairy Sci 53: 1123–1135

    Article  PubMed  CAS  Google Scholar 

  • Morgan PN, Keen CL, Lönnerdal B (1988a) The effect of varying dietary zinc intake of weanling mouse pups during recovery from early undernutrition on dssue mineral concentrations, relative organ weights, hematological variables, and muscle composition. J Nutr (in press)

    Google Scholar 

  • Morgan PN, Keen CL, Calvert CC, Lönnerdal B (1988b) The. effect of varying dietary zinc intake of weanling mouse pups during recovery from early undernutrition on growth, body composition and composition of gain. J Nutr (in press)

    Google Scholar 

  • Morisawa M, Mohii H (1972) Heavy metals and spermatozoan motility. Exp Cell Res 70: 311–316

    Article  PubMed  CAS  Google Scholar 

  • Noda K (1975) Possible effect of blood ammonia on food intake of rats fed amino acid imbalanced diets. J Nutr 105: 508–516

    PubMed  CAS  Google Scholar 

  • Nordheim A, Pardue ML, Lafer EM, Möller A, Stollar BD, Rich A (1981) Antibodies to left handed Z-DNA bind to interband regions of Drosophila polytene chromosomes. Nature 294: 417–422

    Article  PubMed  CAS  Google Scholar 

  • O’Dell BL, Newberne PM, Savage JE (1958) Significance of dietary zinc for growing chickens. J Nutr 65: 503–524

    PubMed  Google Scholar 

  • O’Dell BL, Browning JD, Reeves PG (1987) Zinc deficiency increases the osmotic fragility of rat erythrocytes. J Nutr 117: 1883–1889

    PubMed  Google Scholar 

  • O’kada A, Takagi Y, Itakura T et al. (1976) Skin lesions during intravenous hyperalimentation: zinc deficiency. Surgery 80: 629–635

    Google Scholar 

  • O’Neal RM, Pla GW, Spivey Fox MR, Gibson FS, Fry BE Jr (1970) Effect of zinc deficiency and restricted feeding on protein and ribonucleic acid metabolism of rat brain. J Nutr 100: 491–497

    PubMed  Google Scholar 

  • Oteiza PI, Hurley LS, Lönnerdal B, Keen CL (1988) Marginal zinc deficiency affects maternal brain microtubule assembly in rats. J Nutr (submitted)

    Google Scholar 

  • Pardee AB, Coppock DL, Yang HC (1986) Regulation of cell proliferation at the onset of DNA synthesis. J Cell Sci [Suppl] 4: 171–180

    CAS  Google Scholar 

  • Peng Y, Harper AE (1969) Amino acid balance and food intake. Effect of amino acid infusion on plasma amino acids. J Physiol 217: 1441–1445

    CAS  Google Scholar 

  • Prasad AS, Oberleas D (1973) Thymidine kinase activity and incorporation of thymidine into DNA in zinc-deficient tissue. J Lab Clin Med 83: 634–639

    Google Scholar 

  • Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31: 532–546

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS, Oberleas D, Miller ER, Luecke RW (1971) Biochemical effects of zinc deficiency: changes in activities of zinc-dependent enzymes and ribonucleic acid and deoxyribonucleic acid content of tissues. J Lab Clin Med 77: 144–152

    PubMed  CAS  Google Scholar 

  • Rabbani P, Prasad AS (1977) Effect of zinc deficiency on blood urea, plasma ammonia, and liver ornithine carbamyl transferase activity in male rats. Fed Proc 36: 1139

    Google Scholar 

  • Record IR, Dreosti IE. (1979) Effects of zinc deficiency on liver and brain thymidine kinase activity in the fetal rat. Nutr Rep Int 20: 749–755

    CAS  Google Scholar 

  • Reeves PG, O’Dell BL (1981) Short-term zinc deficiency in the rat and self-selection of dietary protein level. J Nutr 111: 375–383

    PubMed  CAS  Google Scholar 

  • Rubin H (1973) pH, serum and Zn++ in the regulation of DNA synthesis in cultures of chick embryo cells. J Cell Physiol 82: 231–238

    Article  Google Scholar 

  • Sandstead HH, Rinaldi RA (1969) Impairment of deoxyribonucleic acid synthesis by dietary zinc deficiency in the rat. J Cell Physiol 73: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Sandstead HH, Gillespie DD, Brady RN (1972) Zinc deficiency: effect on brain of the suckling rat. Pediatr Res 6: 119–125

    Article  PubMed  CAS  Google Scholar 

  • Schneider E, Price CA (1962) Decreased ribonucleic acid levels: a possible cause of growth inhibition in zinc deficiency. Biochim Biophys Acta 55: 406–408

    Article  PubMed  CAS  Google Scholar 

  • Scrutton ML, Wu CW, Goldwalt DA (1971) The presence and possible role of zinc in RNA polymerase obtained from E. coli. Proc Natl Acad Sci USA 68: 2497–2502

    Article  CAS  Google Scholar 

  • Sen D, Crothers DM (1986) Condensation of chromatin: role of multivalent cations. Biochemistry 25: 1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Shin YA, Eichhorn GL (1968) Interactions of metal ions with polynucleotides and related compounds. XI. The reversible unwinding and rewinding of deoxyribonucleic acid by zinc ( II) ions through temperature manipulation. Biochemistry 7: 1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Slater JP, Milduan AS, Loeb LA (1971) Zinc in DNA polymerases. Biochem Biophys Res Commun 44: 27–32

    Article  Google Scholar 

  • Somers M, Underwood EJ (1969) Ribonuclease activity and nucleic acid and protein metabolism in the testes of zinc-deficient rats. Aust J Biol Sci 22: 1277–1282

    PubMed  CAS  Google Scholar 

  • Southon S, Livesey G, Gee JM, Johnson IT (1985) Intestinal cellular proliferation and protein synthesis in zinc-deficient rats. Br J Nutr 53: 595–603

    Article  PubMed  CAS  Google Scholar 

  • Springgate CF, Milduan AS, Abramson R, Engle JL, Loeb LA (1973) Escherichia coli deoxyribonucleic acid polymerase I, a zinc metalloenzyme. Nuclear quadrupolar relaxation studies of the role of bound zinc. J Biol Chem 249: 5987–5991

    Google Scholar 

  • Suwarnasarn A, Wallwork JC, Lykken GI, Low FN, Sandstead HH (1982) Epiphyseal plate development in the zinc-deficient rat. J Nutr 112: 1320–1328

    PubMed  CAS  Google Scholar 

  • Swenerton H, Shrader R, Hurley LS (1969) Zinc-deficient rat embryos: reduced thymidine incorporation. Science 166: 1014–1015

    Article  PubMed  CAS  Google Scholar 

  • Tal M (1969) Metal ions and ribosomal conformation. Biochim Biophys Acta 195: 76–86

    Article  PubMed  CAS  Google Scholar 

  • Terhune MW, Sandstead HH (1972) Decreased RNA polymerase activity in mammalian zinc deficiency. Science 177: 68–69

    Article  Google Scholar 

  • Todd WR, Elvehjem CA, Hart EB (1934) Zinc in the nutrition of the rat. Am J Physiol 107: 146–156

    CAS  Google Scholar 

  • Vallee BL (1959) Biochemistry, physiology, and pathology of zinc. Physiol Rev 39: 443–490

    CAS  Google Scholar 

  • Vallee BL, Falchuk KH (1981) Zinc and gene expression. Philos Trans R Soc Lond [Biol] 294: 185–197

    Article  CAS  Google Scholar 

  • Vallee BL, Galdes A (1984) The metallobiochemistry of zinc enzymes. In: Meister A (ed) Advances in enzymology, vol 56. John Wiley, New York Chichester Brisbane Toronto Singapore, pp 283–430

    Google Scholar 

  • Van Vloten WA, Bos LP (1978) Skin lesions in acquired zinc deficiency due to parenteral nutrition. Dermatologica 156: 175–183

    Article  PubMed  Google Scholar 

  • Walker GM (1986) Magnesium and cell cycle control: an update. Magnesium 5: 9–23

    PubMed  CAS  Google Scholar 

  • Wallwork JC, Duerre JA (1985) Effect of zinc deficiency on methionine metabolism, methylation reactions and protein synthesis in isolated perfused rat liver. J Nutr 115: 252–262

    PubMed  CAS  Google Scholar 

  • Wallwork JC, Sandstead HH (1983) Effect of zinc deficiency on appetite and free amino acid concentrations in rat brain. J Nutr 113: 47–54

    PubMed  CAS  Google Scholar 

  • Wallwork JC, Fosmire EJ, Sandstead HH (1979) Cyclic feeding patterns and plasma amino acid concentrations in zinc deficient rats. Fed Proc 38: 606

    Google Scholar 

  • Wallwork JC, Boten JH, Sandstead HH (1982) Influence of dietary zinc on rat brain catecholamines. J Nutr 112: 514–519

    PubMed  CAS  Google Scholar 

  • Williams RB, Chesters JK (1970) The effects of early zinc deficiency on DNA and protein synthesis in the rat. Br J Nutr 24: 1153–1156

    Google Scholar 

  • Wingender E, Dilloo D, Seifart KH (1984) Zinc ions are differentially required for the transcription of ribosomal 5S RNA and tRNA in a HeLa-cell extract. Nucleic Acids Res 12: 8971–8985

    Article  PubMed  CAS  Google Scholar 

  • Wu FY-H, Wu C-W (1987) Zinc in DNA replication and transcription. Annu Rev Nutr 7: 251–272

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clegg, M.S., Keen, C.L., Hurley, L.S. (1989). Biochemical Pathologies of Zinc Deficiency. In: Mills, C.F. (eds) Zinc in Human Biology. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-3879-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3879-2_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3881-5

  • Online ISBN: 978-1-4471-3879-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics