Skip to main content

Biochemistry of Zinc in Cell Division and Tissue Growth

  • Chapter
Zinc in Human Biology

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

Young rats offered a zinc-deficient diet show an abrupt reduction in growth after only a few days on the diet and before a major reduction in total body zinc content or concentration has occurred (Williams and Mills 1970). This coincides with an equally abrupt reduction in food intake to a level which, in pair-fed animals, severely restricts growth (Chesters and Quarterman 1970). However, when the intake of zinc-deficient rats is increased by gavage to that of controls offered the zinc-adequate diet ad lib, the animals fail to grow and become ill (Chesters and Quarterman 1970; Masters et al. 1983). The reduced tissue growth of a zinc-deficient rat results therefore from a zinc-responsive biochemical defect rather than from a physiological effect of loss of appetite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvares OF, Meyer J (1973) Thymidine uptake cell migration in cheek epithelium of Cndeficient rats. J Oral Pathol 2: 86–94

    Article  PubMed  CAS  Google Scholar 

  • Anderson EP (1973) Nucleosides and nucleoside kinases. In: Boyer PD (ed) The enzymes, vol 9, 3rd edn. Academic Press, New York, London, pp 69–93

    Google Scholar 

  • Baker GW, Duncan JR (1983) Possible site of Zn control of hepatoma cell division in Wistar rats. J Natl Cancer Inst 70: 333–336

    PubMed  CAS  Google Scholar 

  • Barr DH, Harris JW (1973) Growth of P388 leukaemia as an ascites tumor in Zn-deficient mice. Proc Soc Exp Biol Med 144: 284–287

    PubMed  CAS  Google Scholar 

  • Berg JM (1986) More metal binding fingers. Nature 319: 264–265

    Article  Google Scholar 

  • Blanquet S, Plateau P, Brevet A (1983) The role of Zn in 5′,5′ diadenosine tetraphosphate production by aminoacyl-tRNA synthetases. Mol Cell Biochem 52: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Castro CE, Alvares OF, Sevall JS (1986) Zinc deficiency decreases histone Hl° in rat liver. Nutr Reports Int 34: 67–74

    CAS  Google Scholar 

  • Chen S-Y (1986) Autoradiographic study of cell proliferation in acanthotic buccal epithelium of Zn-deficient rabbits. Arch Oral Biol 31: 535–539

    Article  PubMed  CAS  Google Scholar 

  • Chesters JK (1971) Problems caused by variations in food intake in experiments on protein and nucleic acid metabolism. Proc Nutr Soc 30: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Chesters JK (1972) The role of zinc ions in the transformation of lymphocytes by phytohaemagglutinin. Biochem J 130: 133–139

    PubMed  CAS  Google Scholar 

  • Chesters JK (1975) Comparison of the effects of zinc deprivation and actinomycin D on ribonucleic acid synthesis by stimulated lymphocytes. Biochem J 150: 211–218

    PubMed  CAS  Google Scholar 

  • Chesters JK (1978) Biochemical functions of zinc in animals. World Rev Nutr Diet 32: 135–164

    Google Scholar 

  • Chesters JK, Quarterman J (1970) Effects of zinc deficiency on food intake and feeding patterns of rats. Br J Nutr 24: 1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Chesters JK, Will M (1973) Some factors controlling food intake by zinc-deficient rats. Br J Nutr 30: 555–566

    Article  PubMed  CAS  Google Scholar 

  • De Wys W, Pories W (1972) Inhibition of a spectrum of animal tumors by dietary Zn deficiency. J Natl Cancer Inst 48: 375–381

    Google Scholar 

  • Dinsdale D, Williams RB (1977) The enhancement by dietary Zn deficiency of the susceptibility of the rat to colchicine. Br J Nutr 37: 135–142

    Article  PubMed  CAS  Google Scholar 

  • Dinsdale D, Williams RB (1980) Ultrastructural changes in the sperm tail of Zn-deficient rats. J Comp Pathol 90: 559–566

    Article  PubMed  CAS  Google Scholar 

  • Duncan JR, Hurley LS (1978) Thymidine kinase and DNA polymerase activity in normal and Zn-deficient developing rat embryos. Proc Soc Exp Biol Med 159: 39–43

    PubMed  CAS  Google Scholar 

  • Eckhert CD, Hurley LS (1977) Reduced DNA synthesis in zinc deficiency: regional differences in embryonic rats. J Nutr 107: 855–861

    PubMed  CAS  Google Scholar 

  • Falchuk KH, Vallee BL (1985) Zinc and chromatin structure, composition and function. In: Mills CF, Bremner I, Chesters JK (eds) Trace elements in man and animals — TEMA 5. Commonwealth Agricultural Bureaux, Slough, pp 48–55

    Google Scholar 

  • Falchuk KH, Fawcett DW, Vallee BL (1975) Role of Zn in cell division of E. gracilis. J Cell Sci 17: 57–78

    PubMed  CAS  Google Scholar 

  • Falchuk KH, Mazus B, Ber E, Ulpino-Lobb L, Vallee BL (1985) Zinc deficiency and the E. gracilis chromatin: formation of an a-amanatin resistant RNA polymerase II. Biochemistry 24: 2576–2580

    Article  PubMed  CAS  Google Scholar 

  • Fell BF, Leigh LC, Williams RB (1973) The cytology of various organs in Zn-deficient rats with particular reference to the frequency of cell division. Res Vet Sci 14: 317–325

    PubMed  CAS  Google Scholar 

  • Fong LYY, Swak A, Newberne PM (1978) Zinc deficiency and methylbenzyl nitrosamine-induced oesophageal cancer in rats. J Natl Cancer Inst 61: 145–150

    PubMed  CAS  Google Scholar 

  • Fong LYY, Lee JSK, Chan WC, Newberne PM (1982) Zn deficiency and the induction of oesophageal tumors in rats by benzylmethylamine and sodium nitrite. IARC Sci Publ 41: 679–683

    PubMed  CAS  Google Scholar 

  • Fuji T (1954) Presence of zinc in nucleoli and its possible role in mitosis. Nature 174: 1108–1109

    Article  Google Scholar 

  • Fujioka M, Lieberman I (1964) A Zn2+ requirement for synthesis of deoxyribonucleic acid by rat liver. J Biol Chem 239: 1164–1167

    PubMed  CAS  Google Scholar 

  • Giugliano R, Millward DJ (1987) The effects of severe Zn deficiency on protein turnover in muscle and thymus. Br J Nutr 57: 139–155

    Article  PubMed  CAS  Google Scholar 

  • Goerlich O, Holler E (1984) Phenylalanyl-tRNA synthetase of E. coli K10. Effects of Zn(II) on partial reactions of diadenosine 5′,5″′-P1, P4 tetraphosphate synthesis, conformation and protein aggregation. Biochemistry 23: 182–190

    Article  PubMed  CAS  Google Scholar 

  • Grey PC, Dreosti IE (1972) DNA and protein metabolism in Zn-deficient rats. J Comp Pathol 82: 223–228

    Article  PubMed  CAS  Google Scholar 

  • Grummt F, Weinmann-Dorsch C, Schneider -Schaulies J, Lux A (1986) Zinc as a second messenger of mitogenic induction. Exp Cell Res 163: 191–200

    Article  PubMed  CAS  Google Scholar 

  • Hanas JS, Hazuda DJ, Bogenhagen DF, Wu F Y-H, Wu C-W (1983) Xenopus transcription factor A requires Zn for binding to the 5S RNA gene. J Biol Chem 258: 14120–14125

    PubMed  CAS  Google Scholar 

  • Haskins KM, Zombola RR, Boling JM, Lee YC, Himes RH (1980) Tubulin assembly induced by cobalt and zinc. Biochem Biophys Res Commun 95: 1703–1709

    Article  PubMed  CAS  Google Scholar 

  • Hesketh JE (1981) Impaired microtubule assembly in brain from Zn-deficient pigs and rats. Int J Biochem 13: 921–926

    Article  PubMed  CAS  Google Scholar 

  • Hesketh JE (1982) Zinc stimulated microtubule assembly and evidence for Zn binding to tubulin. Int J Biochem 14: 983–990

    Article  PubMed  CAS  Google Scholar 

  • Hesketh JE (1983) Zinc binding to tubulin. Int J Biochem 15: 743–746

    Article  PubMed  CAS  Google Scholar 

  • Hsu JM, Kim KM, Anthony WL (1974) Biochemical and electron microscopic studies of rat skin during Zn deficiency. Adv Exp Med Biol 48: 347–388

    Article  PubMed  CAS  Google Scholar 

  • Hurley LS, Gowan J, Swenerton H (1971) Teratogenic effects of short-term and transitory zinc deficiency in rats. Teratology 4: 199–204

    Article  CAS  Google Scholar 

  • Lassar AB, Martin PL, Roeder RG (1983) Transcription of class III genes: formation of pre-initiation complexes. Science 222: 740–748

    Article  PubMed  CAS  Google Scholar 

  • Lieberman I, Ove P (1962) Deoxyribonucleic acid synthesis and its inhibition in mammalian cells cultured from the animal. J Biol Chem 237: 1634–1642

    PubMed  CAS  Google Scholar 

  • Lieberman I, Abrams R, Hunt N, Ove P (1963) Levels of enzyme activity and deoxyribonucleic acid synthesis in mammalian cells cultured from the animal. J Biol Chem 238: 3955–3962

    PubMed  CAS  Google Scholar 

  • McQuitty JT, De Wys WD, Monaco L et al. (1970) Inhibition of tumor growth by dietary zinc deficiency. Cancer Res 30: 1387–1390

    PubMed  CAS  Google Scholar 

  • Masters DG, Keen CL, Lönnerdal B, Hurley LS (1983) Zn deficiency teratogenicity: the protective effect of maternal tissue catabolism. J Nutr 113: 905–912

    PubMed  CAS  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4: 1609–1614

    PubMed  CAS  Google Scholar 

  • Mills BJ, Broghamer WL, Higgins PJ, Lindeman RD (1981) A specific dietary Zn requirement for the growth of Walker 256/M1 tumor in the rat. Am J Clin Nutr 34: 1661–1669

    PubMed  CAS  Google Scholar 

  • Minkel DJ, Dolhoun PJ, Calhoun BL, Sarayan LA, Petering DH (1979) Zn deficiency and growth of Ehrlich ascites tumors. Cancer Res 39: 2951–2956

    Google Scholar 

  • Record IR, Dreosti IE (1979) Effects of Zn deficiency on liver and brain thymidine kinase activities in the fetal rat. Nutr Rep Int 20: 749–755

    CAS  Google Scholar 

  • Record IR, Dreosti FE, Manuel SJ, Buckley RA, Tulsi RS (1985) Teratological influence of the feeding cycle in Zn-deficient rats. In: Mills CF, Bremner I, Chesters JK (ed) Trace element metabolism in man and animals — TEMA 5. Commonwealth Bureaux of Nutrition, Slough, pp 210–213

    Google Scholar 

  • Rubin H (1972) Inhibition of DNA synthesis in animal cells by EDTA and its reversal by Zn. Proc Natl Acad Sci 69: 712–716

    Article  PubMed  CAS  Google Scholar 

  • Rubin H, Koide T (1973) Inhibition of DNA synthesis in chick embryo cultures by deprivation of either serum or zinc. J Cell Biol 56: 777–786

    Article  PubMed  CAS  Google Scholar 

  • Sarayan LA, Minkel DT, Dolhoun PJ et al. (1979) Effects of Zn deficiency on cellular processes and morphology in Ehrlich ascites tumor cells. Cancer Res 39: 2457–2465

    Google Scholar 

  • Terhune MW, Sandstead HH (1972) Decreased RNA polymerase activity in mammalian Zn deficiency. Science 177: 68–69

    Article  PubMed  CAS  Google Scholar 

  • Vallee BL, Falchuk KH (1981) Zinc and gene expression. Philos Trans R Soc B 294: 185–197

    Article  CAS  Google Scholar 

  • Vallee BL, Falchuk KH (1983) Gene expression and zinc. In: Sarker B (ed) Biological aspects of metals and metal-related diseases. Raven Press, New York, pp 1–14

    Google Scholar 

  • Vallee BL, Galdes A (1984) The metallobiochemistry of Zn enzymes. Adv Enzymol 56: 283–430

    PubMed  CAS  Google Scholar 

  • Weinmann-Dorsch C, Hedl A, Grummt I et al. (1984) Drastic rise in intracellular adenosine 5’ tetraphosphate 5’ adenosine correlates with onset of DNA synthesis in eukaryotic cells. Eur J Biochem 138: 179–185

    Article  PubMed  CAS  Google Scholar 

  • Westmoreland N (1971) Connective tissue alterations in Zn deficiency. Fed Proc Fed Soc Exp Biol Med 30: 1001–1010

    CAS  Google Scholar 

  • Williams RB, Chesters JK (1970) The effects of early zinc deficiency on DNA and protein synthesis in the rat. Br J Nutr 24: 1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Williams RB, Mills CF (1970) The experimental production of zinc deficiency in the rat. Br J Nutr 24: 989–1003

    Article  PubMed  CAS  Google Scholar 

  • Wingender E, Dilloo D, Seifert KH (1984) Zinc ions are differentially required for the transcription of ribosomal 5S RNA and tRNA in a HeLa cell extract. Nucleic Acids Res 12: 8971–8985

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi N, Kodama M, Ueda K (1985) Diadenosine tetraphosphate as a signal molecule linked with the functional state of rat liver. Gastroenterology 89: 723–731

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chesters, J.K. (1989). Biochemistry of Zinc in Cell Division and Tissue Growth. In: Mills, C.F. (eds) Zinc in Human Biology. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-3879-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3879-2_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3881-5

  • Online ISBN: 978-1-4471-3879-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics