Skip to main content

Zinc in Endocrine Function

  • Chapter
Zinc in Human Biology

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

Endocrinology is the study of the structure and function of the endocrine glands and their secretory products (hormones), including the consequences of excessive or deficient production of the latter. Hormones function as primary chemical messengers that deliver their information or signal to a selected site or target cell by virtue of the presence in the latter of a highly specific receptor to which the hormone will bind. As a result of the hormone-receptor interactions, a sequence of events is initiated, often mediated by second and third messengers, the end result of which is determined both by the chemical nature of the hormone and the type of cell in which the receptor resides. Phenomena ranging from ion transport across the plasma membrane to modification of genome transcription may be affected by hormone action. Hormone production and release and receptor synthesis and metabolism are subject to elaborate positive and negative feedback controls. Thus, under normal circumstances, the entire hormonal network operates in a highly integrated and harmonious fashion to insure growth, development and maintenance of a dynamic steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbasi AA, Prasad AS, Ortega J, Congco E, Oberleas D (1976) Gonadal function abnormalities in sickle cell anemia: studies in adult male patients. Ann Intern Med 85: 601–605

    PubMed  CAS  Google Scholar 

  • Abbasi AA, Prasad AS, Rabbani P, DuMouchelle E (1980) Experimental zinc deficiency in man. Effect on testicular function. J Lab Clin Med 96: 544–550

    Google Scholar 

  • Alitalo K, Keski-Oja J, Bornstein P (1983) Effects of Zn2+ ions on protein phosphorylation in epithelial cell membranes. J Cell Physiol 115: 305–312

    Article  PubMed  CAS  Google Scholar 

  • Ansorge S, Bohley P, Kirschke H, Langner J, Wiederanders B (1984) The insulin and glucagon degrading proteinase of rat liver: a metal-dependent enzyme. Biomed Biochim Acta 43: 39–46

    PubMed  CAS  Google Scholar 

  • Antoniou LD, Shalhoub RJ, Sudhakar T, Smith JC Jr (1977) Reversal of uraemic impotence by zinc. Lancet II: 895–898

    Google Scholar 

  • Apgar J (1968a) Effect of zinc deficiency on parturition in the rat. Am J Physiol 215: 160–163

    PubMed  CAS  Google Scholar 

  • Apgar J (1968b) Comparison of the effect of copper, manganese and zinc deficiencies on parturition in the rat. Am J Physiol 45: 1478–1481

    Google Scholar 

  • Apgar J (1970) Effect of zinc deficiency on maintenance of pregnancy in the rat. J Nutr 100: 470–476

    PubMed  CAS  Google Scholar 

  • Apgar J (1972) Effect of zinc deprivation from day 12, 15 or 18 of gestation on parturition in the rat. J Nutr 102: 343–348

    PubMed  CAS  Google Scholar 

  • Apgar J (1973) Effect of zinc repletion late in gestation on parturition in the zinc-deficient rat. J Nutr 103: 973–981

    PubMed  CAS  Google Scholar 

  • Apgar J (1975) Effects of some nutritional deficiencies on parturition in the rat. J Nutr 105: 1553–1561

    PubMed  CAS  Google Scholar 

  • Apgar J (1976) Zinc requirement for normal parturition in rats. Nutr Rep Int 13: 281–286

    CAS  Google Scholar 

  • Apgar J (1977a) Use of EDTA to produce zinc deficiency in the pregnant rat. J Nutr 107: 539–545

    PubMed  CAS  Google Scholar 

  • Apgar J (1977b) Effect of zinc deficiency and zinc repletion during pregnancy on parturition in two strains of rats. J Nutr 107: 1399–1403

    PubMed  CAS  Google Scholar 

  • Arquilla ER, Packer S, Tarmas W, Miyamoto S (1978) The effect of zinc on insulin metabolism. Endocrinology 103: 1440–1449

    Article  PubMed  CAS  Google Scholar 

  • Blundell T, Dodson G, Hodgkin D, Mercola D (1972) Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv Protein Chem 26: 279–402

    Article  CAS  Google Scholar 

  • Brautigan DL, Bornstein P, Gallis B (1981) Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn2+. J Biol Chem 256: 6519–6522

    PubMed  CAS  Google Scholar 

  • Bunce GE, Vessai M (1987) Effect of zinc and/or pyridoxine deficiency upon oestrogen retention and oestrogen receptor distribution in the rat uterus. J Steroid Biochem 26: 303–308

    Article  PubMed  CAS  Google Scholar 

  • Bunce GE, Wilson GR, Mills CF, Klopper A (1983) Studies on the role of zinc in parturition in the rat. Biochem J 210: 761–767

    PubMed  CAS  Google Scholar 

  • Chesters JK (1978) Biochemical functions of zinc in animals. World Rev Nutr Diet 32: 135–164

    PubMed  CAS  Google Scholar 

  • Colvard DS, Wilson EM (1984) Zinc potentiation of androgen receptor binding to nuclei in vitro. Biochemistry 23: 3471–3478

    Article  PubMed  CAS  Google Scholar 

  • Coulston L, Dandona T (1980) Insulin-like effect of zinc on adipocytes. Diabetes 29: 665–667

    Article  PubMed  CAS  Google Scholar 

  • Dura-Travé T, Puig-Abuli M, Monreal I, Villa-Elizaga I (1984) Relation between maternal plasmatic zinc levels and uterine contractility. Gynecol Obstet Invest 17: 247–251

    Article  PubMed  Google Scholar 

  • Dylewski DP, Lytton FDC, Bunce GE (1986) Dietary zinc and parturition in the rat. II. Myometrial gap junctions. Biol Trace Element Res 9: 165–175

    Google Scholar 

  • Emdin SO, Dodson GG, Cutfield JM, Cutfield SM (1980) Role of zinc in insulin biosynthesis. Diabetologia 19: 174–182

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Stafford AR, Tyers M, Nieboer E (1984) Mechanism of action of diabetogenic zincchelating agents. Mol Pharmacol 27: 366–374

    Google Scholar 

  • Follis RH, Day HG, McCollum EV (1941) Histological studies of the tissues of rats fed a diet extremely low in zinc. J Nutr 22: 223–237

    CAS  Google Scholar 

  • Garfield RE, Sims S, Daniel EE (1977) Gap junctions: their presence and necessity in myometrium during parturition. Science 198: 958–959

    Article  PubMed  CAS  Google Scholar 

  • Garfield RE, Sims S, Kannan MS, Daniel EE (1978) Possible role of gap junctions in activation of myometrium during parturition. Am J Physiol 235: C168 - C179

    PubMed  CAS  Google Scholar 

  • Garfield RE, Kannan MS, Daniel EE (1980) Gap junction formation in myometrium: control by estrogens, progesterone and prostaglandins. Am J Physiol 238: C81 - C89

    PubMed  CAS  Google Scholar 

  • Goldman J, Carpenter FH (1974) Zinc binding, circular dichroism and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry 13: 4566–4574

    Article  PubMed  CAS  Google Scholar 

  • Gombe S, Apgar J, Hansel W (1973) Effect of zinc deficiency and restricted food intake on plasma and pituitary LH and hypothalamic LRF in female rats. Biol Reprod 9: 415–419

    PubMed  CAS  Google Scholar 

  • Grant PT, Coombs TL, Frank BH (1972) Differences in the nature of the interactions of insulin and proinsulin with zinc. Biochem J 126: 433–440

    CAS  Google Scholar 

  • Grummt F, Weinman-Dorsch C, Schneider-Schanlies J, Lux A (1986) Zinc as a second messenger of mitogenic induction. Effects on diadenosine tetraphosphate (Ap4A) and DNA synthesis. Exp Cell Res 163: 191–200

    Article  PubMed  CAS  Google Scholar 

  • Halsted JA, Ronaghy HA, Abadi P et al. (1972) Zinc deficiency in man: the Shiraz experiment. Am J Med 53: 277–284

    Article  PubMed  CAS  Google Scholar 

  • Hambidge KM, Casey CE, Krebs NF (1986) Zinc. In: Mertz W (ed) Trace elements in human and animal nutrition, vol 2. Academic Press, Orlando, Florida, pp 1–137

    Chapter  Google Scholar 

  • Hesketh JE (1982) Effects of dietary zinc deficiency on Leydig cell ultrastructure in the boar. J Comp Pathol 92: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Hoftiezer V, Berggren P-O, Hellman B (1985) Effects of zinc during culture of an insulin-producing rat cell line (RINm5F). Cancer Lett 29: 15–22

    Article  PubMed  CAS  Google Scholar 

  • Howell SL, Tyhurst M, Durefelt H, Anderson A, Hellerstrom C (1978) Role of zinc and calcium in the formation and storage of insulin in the pancreatic 13-cell. Cell Tissue Res 188: 107–118

    Article  PubMed  CAS  Google Scholar 

  • Jameson S (1976) Effects of zinc deficiency in human reproduction. Acta Med Scand [Suppl] 593: 3–89

    Google Scholar 

  • Kalinowski J, Chavez BR (1984) Effect of low dietary zinc during late gestation and early lactation in the sow and neonatal piglets. Can J Anim Sci 64: 749–758

    Article  CAS  Google Scholar 

  • Kellokumpu S, Rajaniemi H (1981) Effect of zinc on the uptake of the human chorionic gonadotropin in rat testis and testosterone response in vivo. Biol Reprod 24: 298–305

    Article  PubMed  CAS  Google Scholar 

  • Kellokumpu S, Rajaniemi H (1982) Dissociation of receptor-bound human chorionic gonadotropin from rat testicular membranes in vitro as a high molecular weight complex and its inhibition by heavy metals and alkylating agents. Biochim Biophys Acta 718: 26–34

    Article  PubMed  CAS  Google Scholar 

  • Krust A, Green S, Argos P et al. (1986) The chicken oestrogen receptor sequence: homology and v-erbA and the human oestrogen and glucocorticoid receptors. EMBO J 5: 891–897

    PubMed  CAS  Google Scholar 

  • Lei KY, Abbasi A, Prasad AS (1976) Function of the pituitary-gonadal axis in zinc-deficient rats. Am J Physiol 230: 1730–1732

    PubMed  CAS  Google Scholar 

  • Lohmar PH, Toft DO (1975) Inhibition of the binding of progesterone receptor to nuclei: effects of o-phenanthroline and rifamycin AF/013. Biochem Biophys Res Comm 67: 8–15

    Article  PubMed  CAS  Google Scholar 

  • Lytton FDC, Bunce GE (1986) Dietary zinc and parturition in the rat. I. Uterine pressure cycles. Biol Trace Element Res 9: 151–163

    Google Scholar 

  • McClain CJ, Gavaler JS, VanThiel DH (1984) Hypogonadism in the zinc-deficient rat: localization of the functional abnormalities. J Lab Clin Med 104: 1007–1015

    PubMed  CAS  Google Scholar 

  • Mahajan SK, Abbasi AA, Prasad AS, Rabbani P, Briggs WA, McDonald FD (1982) Effect of oral zinc therapy on gonadal function in hemodialysis patients. Ann Intern Med 97: 357–361

    PubMed  CAS  Google Scholar 

  • Matusik RJ, Kreis C, McNicol P et al. (1986) Regulation of prostatic genes: role of androgens and zinc in gene expression. Biochem Cell Biol 64: 601–607

    Google Scholar 

  • May JM, Contoreggi CS (1982) The mechanism of the insulin-like effects of ionic zinc. J Biol Chem 257: 4362–4368

    PubMed  CAS  Google Scholar 

  • Millar MJ, Fischer MI, Elcoate PV, Mawson CA (1958) The effects of dietary zinc deficiency on the reproductive system of male rats. Can J Biochem Physiol 36: 557–569

    Article  PubMed  CAS  Google Scholar 

  • Millar MJ, Elcoate PV, Fischer MI, Mawson CA (1960) Effect of testosterone and gonadotropin injections on the sex organ development of zinc-deficient male rats. Can J Biochem Physiol 38: 1457–1466

    Article  PubMed  CAS  Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4: 1609–1614

    PubMed  CAS  Google Scholar 

  • Pang DT, Shafer JA (1985) Inhibition of the activation and catalytic activity of insulin receptor kinase by zinc and other divalent metal ions. J Biol Chem 260: 5126–5130

    PubMed  CAS  Google Scholar 

  • Park JHY, Grandjean CJ, Hart MH, Erdman JH, Pour P, Vanderhoof JA (1986) Effect of pure zinc deficiency on glucose tolerance and insulin and glucagon levels. Am J Physiol 251: E273 — E278

    PubMed  CAS  Google Scholar 

  • Prasad AS (1985) Clinical, endocrinological and biochemical effects of zinc deficiency. In: Cohen MP, Foa PP (eds) Special topics in endocrinology and metabolism, vol 7. Alan R. Liss, New York, pp 45–76

    Google Scholar 

  • Prasad AS, Halstead JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31: 532–546

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS, Miale A, Farid Z, Sandstead HH, Schulert AR, Darby WJ (1963a) Biochemical studies on dwarfism, hypogonadism and anemia. AMA Arch Int Med 111: 407–428

    Article  CAS  Google Scholar 

  • Prasad AS, Miale A, Farid Z, Schulert A, Sandstead HH (1963b) Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism and hypogonadism. J Lab Clin Med 61: 537–547

    PubMed  CAS  Google Scholar 

  • Reeves PG, O’Dell BL (1983) The effect of zinc deficiency op glucose metabolism in meal-fed rats. Br J Nutr 49: 441–452

    Article  PubMed  CAS  Google Scholar 

  • Ronaghy HA, Halsted JA (1975) Zinc deficiency occurring in females. Report of two cases. Am J Clin Nutr 28: 831–836

    Google Scholar 

  • Root AW, Duckett G, Sweetland M, Reiter RO (1979) Effects of zinc deficiency upon pituitary function in sexually mature and immature male rats. J Nutr 109: 958–964

    PubMed  CAS  Google Scholar 

  • Roth HP, Kirchgessner M (1981) Zinc and insulin metabolism. Biol Trace Element Res 3: 13–32

    Article  CAS  Google Scholar 

  • Scott DA (1934) Crystalline insulin. Biochem J 28: 1592–1602

    PubMed  CAS  Google Scholar 

  • Shymala G, Yeh Y-F (1975) Is the estrogen receptor of mammary glands a metallo-protein? Biochem Biophys Res Commun 64: 408–415

    Article  Google Scholar 

  • Todd WR, Elvehjem CA, Hart EG (1934) Zinc in the nutrition of the rat. Am J Physiol 107: 146–156

    CAS  Google Scholar 

  • Weinberger C, Hollenberg SM, Rosenfeld MG, Evans RM (1985) Domain structure of human glucocorticoid receptor and its relationship to the v-erbA oncogene product. Nature 318: 670–672

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bunce, G.E. (1989). Zinc in Endocrine Function. In: Mills, C.F. (eds) Zinc in Human Biology. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-3879-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3879-2_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3881-5

  • Online ISBN: 978-1-4471-3879-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics