Skip to main content

Virtual Humans’ Behaviour: Individuals, Groups, and Crowds

  • Chapter
Digital Media: The Future

Abstract

In this chapter, we first try to identify which mechanisms should be simulated in order to implement truly virtual humans or actors. We start from a structure linking perception, emotion, behavior, and action. Then we emphasize the central concept of autonomy and introduce the concept of Levels of Autonomy. Finally, we propose a new abstraction for specification of behaviours in complex virtual environment simulations involving human agents, groups of agents, and interactive objects endowed with different levels of autonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meyer, J.A. and Guillot, A. From SAB90 to SAB94: four years of animat research. In Proceedings of Third International Conference on Simulation of Adaptive Behavior, Brighton, UK, 1994.

    Google Scholar 

  2. Bates, J. The role of emotion in believable agents. Communications of the ACM, 37 (7), 122–125, 1994.

    Article  Google Scholar 

  3. Parent, R. Computer Animation: Algorithms and Techniques,http://www. cis. ohiostate. edu/ parent/OxfordPress.html.

    Google Scholar 

  4. Wooldridge, M. and Jennings, N. Intelligent agents: theory and practice. Knowledge Engineering Review, 10 (2), 1995.

    Google Scholar 

  5. Reynolds, C. (1987) Flocks, herds, and schools: a distributed behavioral model, Proc. SIGGRAPH ‘87, Computer Graphics, 21(4), 25–34, 1987.

    Article  Google Scholar 

  6. Badler, N.I., Phillips, C., and Webber, B.L. Simulating Humans: Computer Graphics, Animation, and Control. Oxford University Press, New York, 1993.

    MATH  Google Scholar 

  7. Tu, X. and Terzopoulos D. Artificial fishes: physics, locomotion, perception, behavior, Proc. SIGGRAPH ‘84, Computer Graphics, pp. 42–48, 1994.

    Google Scholar 

  8. Hodgins, J.K., Wooten, W.L., Brogan D.C., and O’Brien, J.F. Animating human athletics. Proceedings of SIGGRAPH ‘85, pp. 71–78, Los Angeles, CA, 6–11 August 1995.

    Google Scholar 

  9. Unuma, M., Anjyo, K., and Takeuchi, R. Fourier principles for emotion-based human figure animation. Proceedings of SIGGRAPH ‘85, pp. 91–96, Los Angeles, CA, 6–11 August 1995.

    Google Scholar 

  10. Brooks, R.A. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation,RA-2(1), 1986.

    Google Scholar 

  11. Brooks, R.A. A robot that walks; emergent behaviors from a carefully evolved network. MIT AI Lab Memo 1091, February 1989.

    Google Scholar 

  12. Maes, P. “How to do the right thing, Connection Science, 1 (3), 1989.

    Google Scholar 

  13. Beer, R.D., Ritzmann, R.E. and McKenna, T. (eds.) Biological Neural Networks in Invertebrate Neuroethology and Robotics. Academic Press, 1993.

    Google Scholar 

  14. Ahmad, O., Cremer, J., Hansen, S., Kearny, J., and Willemsen, P. Hierarchical, concurrent state machines for behavior modeling and scenario control. In Conference on AI, Planning, and Simulation in High Autonomy Systems, Gainesville, Florida, 1994.

    Google Scholar 

  15. Blumberg, B.M. Action-selection in hamsterdam: lessons from ethology. In Third International Conference on the Simulation of Adaptive Behavior, pp. 108–117, Brighton, UK, 1994.

    Google Scholar 

  16. Blumberg, B.M. and Galyean, T.A. Multi-level direction of autonomous creatures for real-time virtual environment. In Proceedings of SIGGGRAPH ‘85, pp. 47–54, August 1995.

    Google Scholar 

  17. Maes, P. Artifical life meets entertainment: lifelike autonomous agents. In Communications of the ACM, 38(11), 108–114, 1995.

    Article  Google Scholar 

  18. Maes, P., Darell, T., Blumberg, B., and Pentland, A. The ALIVE system: full-body interaction with autonomous agents. Proceedings of Computer Animation ‘85, pp. 11–18, Geneva, Switzerland, 19–21 April 1995.

    Google Scholar 

  19. Perlin, K. Interacting with virtual actors. Visual Proceedings of SIGGRAPH ‘85, pp. 92–93, Los Angeles, CA, 6–11 August 1995.

    Google Scholar 

  20. Mataric, M.J. From local interactions to collective intelligence. In The biology and Technology of Intelligent Autonomous Agents (ed. Luc Steels). NATO ASI Series F, Vol. 144, pp. 275–295, 1995.

    Article  Google Scholar 

  21. Bécheiraz, P. and Thalmann, D. A model of nonverbal communication and interpersonal relationship between virtual actors. In Proceedings of Computer Animation ‘86, Geneva, 1996

    Google Scholar 

  22. Reilly, W.S.N. Believable social and emotional agents. Technical Report CMU-CS-96–138, School of Computer Science, Carnegie Mellon University, December 1996.

    Google Scholar 

  23. Loyall, A.B. and Bates, J. Personality-rich believable agents that use language. Proceedings of the First International Conference on Autonomous Agents, Marina del Rey, California, February 1997.

    Google Scholar 

  24. Mateas, M. An Oz-centric review of interactive drama and believable agents. Technical Report CMU-CS-97–156, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, June 1997.

    Google Scholar 

  25. Zeltzer, D. Task-level graphical simulation: abstraction, representation and control. In Making them Move: Mechanics, Control and Animation of Articulated Figures (ed. N. Badler, B. Barsky, and D. Zeltzer), pp. 3–33, 1991.

    Google Scholar 

  26. Thalmann, D. A New generation of synthetic actors: the interactive perceptive actors. Proc. Pacific Graphics ‘86, National Chiao Tung University Press, Hsinchu, Taiwan, pp. 200–219, 1996.

    Google Scholar 

  27. Cavazza, M., Earnshaw, R., Magnenat-Thalmann, N. and Thalmann, D. Motion control of virtual humans. IEEE Computer Graphics and Applications, 18 (5), 24–31, 1998.

    Article  Google Scholar 

  28. Noser, H. and Thalmann, D. (1996) The animation of autonomous actors based on production rules, Proceedings Computer Animation ‘86, 3–4 June 1996, Geneva, Switzerland. IEEE Computer Society Press, Los Alamitos, California, pp. 47–57, 1996.

    Google Scholar 

  29. Brogan, D.C., Metoyer, R.A., and Hodgins, J.K. Dynamically simulated characters in virtual environments. IEEE Computer Graphics and Applications. 18 (5), 58–69, 1998.

    Article  Google Scholar 

  30. Bouvier, E., Cohen, E., and Najman, L. From crowd simulation to airbag deployment: particle systems, a new paradigm of simulation. Journal of Electronic Imaging, 6 (1), 94–107, 1997.

    Article  Google Scholar 

  31. Musse, S.R., Babski, C., Capin, T., and Thalmann, D. Crowd modelling in collaborative virtual environments. ACM VRST ‘88,Taiwan

    Google Scholar 

  32. Kallmann, M. and Thalmann, D. Modeling objects for interaction tasks, Proc. Eurographics Workshop on Animation and Simulation, 1998.

    Google Scholar 

  33. Badler, N. Virtual humans for animation, ergonomics, and simulation. IEEE Workshop on Non-Rigid and Articulated Motion, Puerto Rico, June 1997.

    Google Scholar 

  34. Johnson, W.L. and Rickel, J. Steve: an animated pedagogical agent for procedural training in virtual environments, Sigart Bulletin, 8 (1–4), 16–21, 1997.

    Article  Google Scholar 

  35. Magnenat Thalmann N., Thalmann D. Creating artificial life in virtual reality. In Artificial Life and Virtual Reality (eds. Magnenat Thalmann, N. and Thalmann, D. ). John Wiley, Chichester, 1994, pp. 1–10.

    Google Scholar 

  36. Becheiraz, P. and Thalmann, D. A behavioral animation system for autonomous actors personified by emotions, Proc. First Workshop on Embodied Conversational Characters (WECC 98),Lake Tahoe, USA.

    Google Scholar 

  37. Renault, O., Magnenat-Thalmann, N., and Thalmann, D. A vision-based approach to behavioral animation, The Journal of Visualization and Computer Animation, 1(1), 18–21.

    Google Scholar 

  38. Reynolds, C.W. An evolved, vision-based behavioral model of coordinated group motion. In From Animals to Animats (eds. Meyer, J.A., Roitblat, H.L., and Wilson, S.W.), Proc. 2nd International Conf. on Simulation of Adaptive Behavior, MIT Press, 1993.

    Google Scholar 

  39. Ortony, A., Clore, G.L., and Collins, A. The Cognitive Structure of Emotions. Cambridge University Press, 1990.

    Google Scholar 

  40. Boulic, R., Capin, T., Kalra, P., Lintermann, B., Moccozet, L., Molet, T., Huang, Z., MagnenatThalmann, N., Saar, K., Schmitt, A., Shen, J., and Thalmann, D. The HUMANOID environment for interactive animation of multiple deformable human characters. Proceedings of EUROGRAPHICS ‘85, pp. 337–348, Maastricht, The Netherlands, 28 August-1 September 1995.

    Google Scholar 

  41. Boulic, R., Bécheiraz, P., Emering, L., and Thalmann, D. Integration of motion control techniques for virtual human and avatar real-time animation. Proc. VRST ‘87, ACM Press, pp. 111–118, September 1997.

    Google Scholar 

  42. Noser, H., Renault, O., Thalmann, D., and Magnenat Thalmann, N. Navigation for digital actors based on synthetic vision, memory and learning, Computers and Graphics, 19 (1), 7–19, 1995.

    Article  Google Scholar 

  43. Bourgine, P. Autonomy, abduction, adaptation, in Proc. Computer Animation ‘84 (eds. Magnenat Thalmann, N. and Thalmann, D.). IEEE Computer Society Press, 1994.

    Google Scholar 

  44. Courant, M., Beat Hirsbrunner, B., and Stoffel, B. Managing entities for an autonomous behaviour, in Artificial Life in Virtual Reality (eds. Magnenat Thalmann, N. and Thalmann, D.). John Wiley & Sons, 1994.

    Google Scholar 

  45. Reeves, W. Particle systems - a technique for modeling a class of fuzzy objects, ACM Transactions on Graphics, 2 (2), April 1993.

    Google Scholar 

  46. Huang, Z. et al. A multi-sensor approach for grasping and 3D interaction, Proc. Computer Graphics International ‘85, Leeds, Academic Press, pp. 235–254.

    Google Scholar 

  47. Levison, L. Connecting planning and acting via object-specific reasoning, PhD thesis, Dept. of Computer & Information Science, University of Pennsylvania, 1996.

    Google Scholar 

  48. Musse, S.R. and Thalmann, D. A model of human crowd behavior: group inter-relationship and collision detection analysis. Proc. Workshop of Computer Animation and Simulation of Eurographics ‘87, September 1997. Budapest, Hungary.

    Google Scholar 

  49. Kallmann, M. and Thalmann, D. A behavioral interface to simulate agent-object interactions in real time. Proc. Computer Animation ‘89, IEEE Computer Society Press, 1999.

    Google Scholar 

  50. Farenc, N. et al. A paradigm for controlling virtual humans in urban environment simulation. Applied Artificial Intelligence Journal,Special Issue on Artificial Intelligence (in press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this chapter

Cite this chapter

Thalmann, D., Musse, S.R., Kallmann, M. (2000). Virtual Humans’ Behaviour: Individuals, Groups, and Crowds. In: Vince, J.A., Earnshaw, R. (eds) Digital Media: The Future. Springer, London. https://doi.org/10.1007/978-1-4471-3646-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3646-0_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-857-7

  • Online ISBN: 978-1-4471-3646-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics