Skip to main content

Femoropopliteal Endovascular Interventions

  • Chapter
  • First Online:
Vascular Surgery

Part of the book series: New Techniques in Surgery Series ((NEWTECHN,volume 6))

  • 2543 Accesses

Abstract

The treatment of peripheral arterial disease (PAD) has witnessed a remarkable evolution in the past two decades. While endovascular therapy has become well established as a primary treatment modality in aortoiliac occlusive disease, transcatheter treatment of infrainguinal occlusive disease remains controversial. The availability of a wide range of therapeutic options and devices applicable to infrainguinal interventions has resulted in a dramatic increase in the number of peripheral endovascular procedures over the past decade, with a staggering reported 979 % growth in peripheral vascular interventions reported since 1995. Despite this remarkable growth and increasing acceptance, many questions remain unanswered regarding the indications, choice of device/technique, clinical efficacy, long-term outcome, and cost-effectiveness of the available competing modalities. These decisions are also compounded by intense and often conflicting marketing efforts by the industry in the current competitive market. With the scarcity of randomized controlled trials, much of the published reports for newer endovascular technologies rely primarily on immediate angiographic outcomes and target limb revascularization (TLR) data. The following text is meant to provide an overview over current treatment options, technologies, and devices based on available evidence and the experience and opinions of the authors. The endovascular surgeon must be familiar with all the available treatments for PAD in order to continue to manage these patients amidst the increasingly complex health-care environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson PL, Gelijns A, Moskowitz A, et al. Understanding trends in inpatient surgical volume: vascular interventions, 1980–2000. J Vasc Surg. 2004;39(6):1200–8.

    Article  PubMed  Google Scholar 

  2. Dormandy J, Heeck L, Vig S. Peripheral arterial occlusive disease: clinical data for decision making. Introduction. Semin Vasc Surg. 1999;12(2):95.

    PubMed  CAS  Google Scholar 

  3. Bhatt DL, Hirsch AT, Ringleb PA, Hacke W, Topol EJ. Reduction in the need for hospitalization for recurrent ischemic events and bleeding with clopidogrel instead of aspirin. CAPRIE investigators. Am Heart J. 2000;140(1):67–73.

    Article  PubMed  CAS  Google Scholar 

  4. Anand SS, Kundi A, Eikelboom J, Yusuf S. Low rates of preventive practices in patients with peripheral vascular disease. Can J Cardiol. 1999;15(11):1259–63.

    PubMed  CAS  Google Scholar 

  5. Criqui MH, Fronek A, Barrett-Connor E, Klauber MR, Gabriel S, Goodman D. The prevalence of peripheral arterial disease in a defined population. Circulation. 1985;71(3):510–5.

    Article  PubMed  CAS  Google Scholar 

  6. Kannel WB, McGee DL. Update on some epidemiologic features of intermittent claudication: the Framingham Study. J Am Geriatr Soc. 1985;33(1):13–8.

    PubMed  CAS  Google Scholar 

  7. McDaniel MD, Cronenwett JL. Basic data related to the natural history of intermittent claudication. Ann Vasc Surg. 1989;3(3):273–7.

    Article  PubMed  CAS  Google Scholar 

  8. Second European Consensus Document on chronic critical leg ischemia. Eur J Vasc Surg. 1992;6(Suppl A):1–32.

    Google Scholar 

  9. Second European Consensus Document on chronic critical leg ischemia. Circulation. 1991;84(4 Suppl):IV1–26.

    Google Scholar 

  10. Long-term mortality and its predictors in patients with critical leg ischaemia. The I.C.A.I. Group (Gruppo di Studio dell’Ischemia Cronica Critica degli Arti Inferiori). The Study Group of Critical Chronic Ischemia of the Lower Extremities. Eur J Vasc Endovasc Surg. 1997;14(2):91–5.

    Google Scholar 

  11. Perkins JM, Collin J, Creasy TS, Fletcher EW, Morris PJ. Exercise training versus angioplasty for stable claudication. Long and medium term results of a prospective, randomised trial. Eur J Vasc Endovasc Surg. 1996;11(4):409–13.

    Article  PubMed  CAS  Google Scholar 

  12. Lundgren F, Dahllöf A-G, Lundholm K, Schersten T, Volkmann R. Intermittent claudication-surgical reconstruction or physical training? A prospective randomized trial of treatment efficiency. Ann Surg. 1989;209(3):346–55.

    Article  PubMed  CAS  Google Scholar 

  13. Veith FJ, Gupta SK, Wengerter KR, Rivers SP, Bakal CW. Impact of nonoperative therapy on the clinical management of peripheral arterial disease. Circulation. 1991;83(2 Suppl):I137–42.

    PubMed  CAS  Google Scholar 

  14. Hertzer NR. The natural history of peripheral vascular disease. Implications for its management. Circulation. 1991;83(2 Suppl):I12–9.

    PubMed  CAS  Google Scholar 

  15. Bendermacher BLW, Willigendael EM, Teijink JAW, Prins MH. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database Syst Rev. 2006;Issue 2.

    Google Scholar 

  16. Mazari FA, Gulati S, Rahman MN, et al. Early outcomes from a randomized, controlled trial of supervised exercise, angioplasty, and combined therapy in intermittent claudication. Ann Vasc Surg. 2010;24(1):69–79.

    Article  PubMed  CAS  Google Scholar 

  17. Guidelines for percutaneous transluminal angioplasty. Standards of Practice Committee of the Society of Cardiovascular and Interventional Radiology. Radiology. 1990;177(3):619–26.

    Google Scholar 

  18. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 guidelines for the management of patients With peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease. J Am Coll Cardiol. 2006;47(6):e1–192. doi:10.1016/j.jacc.2006.02.024.

    Article  Google Scholar 

  19. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(1, Suppl 1):S1.

    Article  PubMed  Google Scholar 

  20. Allie DE, Hebert CJ, Patlola RR, Ingraldi A, Walker CM. Optimal vessel sizing in peripheral vascular interventions. Treating the peripheral and infrapopliteal arteries like the LAD. Endovasc Today. 2009:34–8.

    Google Scholar 

  21. Saxon RR, Coffman JM, Gooding JM, Natuzzi E, Ponec DJ. Long-term results of ePTFE stent-graft versus angioplasty in the femoropopliteal artery: single center experience from a prospective, randomized trial. J Vasc Interv Radiol. 2003;14(3):303–11.

    Article  PubMed  Google Scholar 

  22. Wu CC, Wen SC. Cutting balloon angioplasty for resistant venous stenoses of dialysis access: immediate and patency results. Catheter Cardiovasc Interv. 2008;71(2):250–4.

    Article  PubMed  Google Scholar 

  23. Schroeder S, Baumbach A, Haase KK, et al. Reduction of restenosis by vessel size adapted percutaneous transluminal coronary angioplasty using intravascular ultrasound. Am J Cardiol. 1999;83(6):875–9.

    Article  PubMed  CAS  Google Scholar 

  24. Allie DE, Patlola RR, Ingraldi A, Hebert CJ, Walker CM. The contemporary CLI toolbox. A close look at the available devices and techniques for treating today’s critical limb ischemia patients. Endovasc Today. 2009:37–50.

    Google Scholar 

  25. Diehm N, Shang A, Silvestro A, et al. Association of cardiovascular risk factors with pattern of lower limb atherosclerosis in 2659 patients undergoing angioplasty. Eur J Vasc Endovasc Surg. 2006;31(1):59–63.

    Article  PubMed  CAS  Google Scholar 

  26. Graziani L, Silvestro A, Bertone V, et al. Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg. 2007;33(4):453–60.

    Article  PubMed  CAS  Google Scholar 

  27. Aboyans V, Lacroix P, Criqui MH. Large and small vessels atherosclerosis: similarities and differences. Prog Cardiovasc Dis. 2007;50(2):112–25.

    Article  PubMed  Google Scholar 

  28. Peripheral atherectomy with the rotablator: a multicenter report. The Collaborative Rotablator Atherectomy Group (CRAG). J Vasc Surg. 1994;19(3):509–15.

    Google Scholar 

  29. Rabellino M, Zander T, Baldi S, et al. Clinical follow-up in endovascular treatment for TASC C-D lesions in femoro-popliteal segment. Catheter Cardiovasc Interv. 2009;73(5):701–5.

    Article  PubMed  Google Scholar 

  30. Bolia A, Sayers RD, Thompson MM, Bell PR. Subintimal and intraluminal recanalisation of occluded crural arteries by percutaneous balloon angioplasty. Eur J Vasc Surg. 1994;8(2):214–9.

    Article  PubMed  CAS  Google Scholar 

  31. Sharafuddin MJ, Hoballah J, Kresowik T, Nicholson R, Sharp W. Impact of aggressive endovascular recanalization techniques on success rate in chronic total arterial occlusions (CTOs). Vasc Endovascular Surg. 2010;44:460–7.

    Article  PubMed  Google Scholar 

  32. Heenan SD, Vinnicombe SJ, Buckenham TM, Belli AM. Percutaneous transluminal angioplasty by a retrograde subintimal transpopliteal approach. Clin Radiol. 1994;49(11):824–7; discussion 827–8.

    Article  PubMed  CAS  Google Scholar 

  33. Noory E, Rastan A, Schwarzwalder U, et al. Retrograde transpopliteal recanalization of chronic superficial femoral artery occlusion after failed re-entry during antegrade subintimal angioplasty. J Endovasc Ther. 2009;16(5):619–23.

    Article  PubMed  Google Scholar 

  34. Sultan S, Hynes N. Five-year Irish trial of CLI patients with TASC II type C/D lesions undergoing subintimal angioplasty or bypass surgery based on plaque echolucency. J Endovasc Ther. 2009;16(3):270–83.

    Article  PubMed  Google Scholar 

  35. Bolia A, Bell PR. Femoropopliteal and crural artery recanalization using subintimal angioplasty. Semin Vasc Surg. 1995;8(3):253–64.

    PubMed  CAS  Google Scholar 

  36. Met R, Van Lienden KP, Koelemay MJ, Bipat S, Legemate DA, Reekers JA. Subintimal angioplasty for peripheral arterial occlusive disease: a systematic review. Cardiovasc Intervent Radiol. 2008;31(4):687–97.

    Article  PubMed  Google Scholar 

  37. Scott EC, Biuckians A, Light RE, Burgess J, Meier 3rd GH, Panneton JM. Subintimal angioplasty: our experience in the treatment of 506 infrainguinal arterial occlusions. J Vasc Surg. 2008;48(4):878–84.

    Article  PubMed  Google Scholar 

  38. Hayes PD, Chokkalingam A, Jones R, et al. Arterial perforation during infrainguinal lower limb angioplasty does not worsen outcome: results from 1409 patients. J Endovasc Ther. 2002;9(4):422–7.

    Article  PubMed  Google Scholar 

  39. Hausegger KA, Georgieva B, Portugaller H, Tauss J, Stark G. The outback catheter: a new device for true lumen re-entry after dissection during recanalization of arterial occlusions. Cardiovasc Intervent Radiol. 2004;27(1):26–30.

    Article  PubMed  Google Scholar 

  40. Wiesinger B, Steinkamp H, Konig C, Tepe G, Duda SH. Technical report and preliminary clinical data of a novel catheter for luminal re-entry after subintimal dissection. Invest Radiol. 2005;40(11):725–8.

    Article  PubMed  Google Scholar 

  41. Beschorner U, Sixt S, Schwarzwalder U, et al. Recanalization of chronic occlusions of the superficial femoral artery using the outback re-entry catheter: a single centre experience. Catheter Cardiovasc Interv. 2009;74(6):934–8.

    Article  PubMed  Google Scholar 

  42. Saketkhoo RR, Razavi MK, Padidar A, Kee ST, Sze DY, Dake MD. Percutaneous bypass: subintimal recanalization of peripheral occlusive disease with IVUS guided luminal re-entry. Tech Vasc Interv Radiol. 2004;7(1):23.

    Article  PubMed  Google Scholar 

  43. Al-Ameri H, Shin V, Mayeda GS, et al. Peripheral chronic total occlusions treated with subintimal angioplasty and a true lumen re-entry device. J Invasive Cardiol. 2009;21(9):468–72.

    PubMed  Google Scholar 

  44. Jacobs DL, Cox DE, Motaganahalli R. Crossing chronic total occlusions of the iliac and femoral-popliteal vessels and the use of true lumen reentry devices. Perspect Vasc Surg Endovasc Ther. 2006;18(1):31–7.

    Article  PubMed  Google Scholar 

  45. Boguszewski A, Torey J, Pai R, Kamalakannan D, Jefic D, Davis T. Intraluminal recanalization of SFA CTOs. Endovasc Today. 2010:33–8.

    Google Scholar 

  46. Heuser RR, Murarka S. The support-balloon technique for chronic total occlusion: successful recanalization of a 27-year- old occlusion. Vasc Dis Manag. 2010;7:e171–4.

    Google Scholar 

  47. Atmakuri SR, Lev EI, Alviar C, et al. Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions. J Am Coll Cardiol. 2006;47(3):515–21.

    Article  PubMed  Google Scholar 

  48. Kirvaitis RJ, Heuser RR, Das TS, et al. Usefulness of optical coherent reflectometry with guided radiofrequency energy to treat chronic total occlusions in peripheral arteries (the GRIP trial). Am J Cardiol. 2004;94(8):1081–4.

    Article  PubMed  Google Scholar 

  49. Ramaiah V. Endovascular infrainguinal revascularization: technical tips for atherectomy device selection and procedural success. Semin Vasc Surg. 2008;21:41–9.

    Article  PubMed  Google Scholar 

  50. Clark TW, Groffsky JL, Soulen MC. Predictors of long-term patency after femoropopliteal angioplasty: results from the STAR registry. J Vasc Interv Radiol. 2001;12(8):923–33.

    Article  PubMed  CAS  Google Scholar 

  51. Abularrage CJ, Conrad MF, Hackney LA, et al. Long-term outcomes of diabetic patients undergoing endovascular infrainguinal interventions. J Vasc Surg. 2010;52(2):314–22 e1–4.

    Article  PubMed  Google Scholar 

  52. Adar R, Critchfield GC, Eddy DM. A confidence profile analysis of the results of femoropopliteal percutaneous transluminal angioplasty in the treatment of lower-extremity ischemia. J Vasc Surg. 1989;10(1):57–67.

    PubMed  CAS  Google Scholar 

  53. Johnston KW. Femoral and popliteal arteries: reanalysis of results of balloon angioplasty. Radiology. 1992;183(3):767–71.

    PubMed  CAS  Google Scholar 

  54. Dorrucci V. Treatment of superficial femoral artery occlusive disease. J Cardiovasc Surg (Torino). 2004;45(3):193–201.

    CAS  Google Scholar 

  55. Taylor Jr LM, Porter JM. Clinical and anatomic considerations for surgery in femoropopliteal disease and the results of surgery. Circulation. 1991;83(2 Suppl):163–9.

    Google Scholar 

  56. Veith FJ, Gupta SK, Ascer E, et al. Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg. 1986;3(1):104–14.

    PubMed  CAS  Google Scholar 

  57. Bakal CW, Sprayregen S, Scheinbaum K, Cynamon J, Veith FJ. Percutaneous transluminal angioplasty of the infrapopliteal arteries: results in 53 patients. Am J Roentgenol. 1990;154(1):171–4.

    CAS  Google Scholar 

  58. Brown KT, Moore ED, Getrajdman GI, Saddekni S. Infrapopliteal angioplasty: long-term follow-up. J Vasc Interv Radiol. 1993;4(1):139–44.

    Article  PubMed  CAS  Google Scholar 

  59. Bull PG, Mendel H, Hold M, Schlegl A, Denck H. Distal popliteal and tibioperoneal transluminal angioplasty: long-term follow-up. J Vasc Interv Radiol. 1992;3(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  60. Horvath W, Oertl M, Haidinger D. Percutaneous transluminal angioplasty of crural arteries. Radiology. 1990;177(2):565–9.

    PubMed  CAS  Google Scholar 

  61. Matsi PJ, Manninen HI, Suhonen MT, Pirinen AE, Soimakallio S. Chronic critical lower-limb ischemia: prospective trial of angioplasty with 1–36 months follow-up. Radiology. 1993;188(2):381–7.

    PubMed  CAS  Google Scholar 

  62. Schwarten DE. Clinical and anatomical considerations for nonoperative therapy in tibial disease and the results of angioplasty. Circulation. 1991;83(2 Suppl):I86–90.

    PubMed  CAS  Google Scholar 

  63. Soder HK, Manninen HI, Jaakkola P, et al. Prospective trial of infrapopliteal artery balloon angioplasty for critical limb ischemia: angiographic and clinical results. J Vasc Interv Radiol. 2000;11(8):1021–31.

    Article  PubMed  CAS  Google Scholar 

  64. Bradbury AW, Adam DJ, Bell J, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL) trial: a survival prediction model to facilitate clinical decision making. J Vasc Surg. 2010;51(5 Suppl):52S–68.

    Article  PubMed  Google Scholar 

  65. Fogarty TJ, White RA. Biomaterials: considerations for endovascular devices. In: Back MR, editor. Peripheral endovascular interventions, vol. 4. New York: Springer; 2010. p. 141–63.

    Chapter  Google Scholar 

  66. Shammas NW. Optimal strategy in lower extremity peripheral percutaneous interventions: an interventionalist’s perspective. Vasc Dis Manag. 2009;6(2):36–40.

    Google Scholar 

  67. Shammas NW, Coiner D, Shammas G, Jerin M. Predictors of Provisional Stenting in Patients Undergoing Lower Extremity Arterial Interventions. Int J Angiol 2011;20:95–100.

    Article  PubMed  Google Scholar 

  68. Diaz ML, Urtasun F, Barberena J, Aranzadi C, Guillen-Grima F, Bilbao JI. Cryoplasty versus conventional angioplasty in femoropopliteal arterial recanalization: 3-year analysis of reintervention-free survival by treatment received. Cardiovasc Intervent Radiol. 2011;34:911–7.

    Article  PubMed  Google Scholar 

  69. Leon MB, Teirstein PS, Moses JW, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N Engl J Med. 2001;344(4):250–6. doi:10.1056/NEJM200101253440402.

    Article  PubMed  CAS  Google Scholar 

  70. Tripuraneni P, Giap H, Jani S. Endovascular brachytherapy for peripheral vascular disease. Semin Radiat Oncol. 1999;9(2):190.

    Article  PubMed  CAS  Google Scholar 

  71. Diamond DA, Vesely TM. The role of radiation therapy in the management of vascular restenosis. Part II. Radiation techniques and results. J Vasc Intervent Radiol. 1998;9(3):389.

    Article  CAS  Google Scholar 

  72. Waksman R, Laird JR, Jurkovitz CT, et al. Intravascular radiation therapy after balloon angioplasty of narrowed femoropopliteal arteries to prevent restenosis: results of the PARIS feasibility clinical trial. J Vasc Intervent Radiol. 2001;12(8):915.

    Article  CAS  Google Scholar 

  73. Schillinger M, Minar E. Advances in vascular brachy therapy over the last 10 years: focus on femoropopliteal applications. J Endovasc Ther. 2004;11(Suppl II):II-180–91. doi:10.1583/04-1298.1.

    Article  Google Scholar 

  74. Wolfram RM, Budinsky AC, Pokrajac B, Pötter R, Minar E. Vascular brachytherapy with 192Ir after femoropopliteal stent implantation in high-risk patients: twelve-month follow-up results from the Vienna-5 trial1. Radiology. 2005;236(1):343–51. doi:10.1148/radiol.2361040696.

    Article  PubMed  Google Scholar 

  75. Wohlgemuth WA, Leissner G, Wengenmair H, Bohndorf K, Kirchhof K. Endovascular brachytherapy in the femoropopliteal segment using 192Ir and 188Re. Cardiovasc Intervent Radiol. 2008;31(4):698.

    Article  PubMed  Google Scholar 

  76. Gage AA, Fazekas G, Riley Jr EE. Freezing injury to large blood vessels in dogs. With comments on the effect of experimental freezing of bile ducts. Surgery. 1967;61(5):748–54.

    PubMed  CAS  Google Scholar 

  77. Laird J, Jaff MR, Biamino G, et al. Cryoplasty for the treatment of femoropopliteal arterial disease: results of a prospective, multicenter registry. J Vasc Interv Radiol. 2005;16(8):1067–73.

    Article  PubMed  Google Scholar 

  78. Samson RH, Showalter DP, Michael Lepore J, Nair DG, Merigliano K. CryoPlasty therapy of the superficial femoral and popliteal arteries: a reappraisal after 44 months’ experience. J Vasc Surg. 2008;48(3):634.

    Article  PubMed  Google Scholar 

  79. Schmieder GC, Carroll M, Panneton JM. Poor outcomes with cryoplasty for lower extremity arterial occlusive disease. J Vasc Surg. 2010;52(2):362–8.

    Article  PubMed  Google Scholar 

  80. Spiliopoulos S, Katsanos K, Karnabatidis D, et al. Cryoplasty versus conventional balloon angioplasty of the femoropopliteal artery in diabetic patients: long-term results from a prospective randomized single-center controlled trial. Cardiovasc Intervent Radiol. 2010;33(5):929.

    Article  PubMed  Google Scholar 

  81. Engelke C, Sandhu C, Morgan RA, Belli A-M. Using 6-mm cutting balloon angioplasty in patients with resistant peripheral artery stenosis: preliminary results. Am J Roentgenol. 2002;179(3):619–23.

    Google Scholar 

  82. Ansel GM, Sample NS, Botti CF, et al. Cutting balloon angioplasty of the popliteal and infrapopliteal vessels for symptomatic limb ischemia. Catheter Cardiovasc Interv. 2003;61:1–4.

    Article  Google Scholar 

  83. Amighi J, Schillinger M, Dick P, et al. De novo superficial femoropopliteal artery lesions: peripheral cutting balloon angioplasty and restenosis rates randomized controlled trial1. Radiology. 2008;247(1):267–72. doi:10.1148/radiol.2471070749.

    Article  PubMed  Google Scholar 

  84. Vikram R, Ross RA, Bhat R, et al. Cutting balloon angioplasty versus standard balloon angioplasty for failing infra-inguinal vein grafts: comparative study of short- and mid-term primary patency rates. Cardiovasc Intervent Radiol. 2007;30(4):607.

    Article  PubMed  Google Scholar 

  85. Scheinert D, Peeters P, Bosiers M, O’Sullivan G, Sultan S, Gershony G. Results of the multicenter first-in-man study of a novel scoring balloon catheter for the treatment of infra-popliteal peripheral arterial disease. Catheter Cardiovasc Interv. 2007;70(7):1034–9.

    Article  PubMed  Google Scholar 

  86. Tepe G, Zeller T, Albrecht T, et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med. 2008;358:689–99. doi:10.1056/NEJMoa0706356.

    Article  PubMed  CAS  Google Scholar 

  87. Werk M, Langner S, Reinkensmeier B, et al. Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation. 2008;118(13):1358–65. doi:10.1161/CIRCULATIONAHA.107.735985.

    Article  PubMed  CAS  Google Scholar 

  88. Allie D, Berens E, Bramucci E, et al. Plaque excision in the peripheral vasculature. Endovasc Today. 2004;(Suppl 1):1–11.

    Google Scholar 

  89. Ramaiah V, Gammon R, Kiesz S, et al. Midterm outcomes from the TALON registry: treating peripherals with SilverHawk: outcomes collection. J Endovasc Ther. 2006;13(5):592–602.

    Article  PubMed  Google Scholar 

  90. Zeller T, Rastan A, Schwarzwalder U, et al. Midterm results after atherectomy-assisted angioplasty of below-knee arteries with use of the Silverhawk device. J Vasc Interv Radiol. 2004;15(12):1391–7.

    Article  PubMed  Google Scholar 

  91. Kandzari DE, Kiesz RS, Allie D, et al. Procedural and clinical outcomes with catheter-based plaque excision in critical limb ischemia. J Endovasc Ther. 2006;13(1):12–22.

    Article  PubMed  Google Scholar 

  92. Sixt S, Rastan A, Beschorner U, et al. Acute and long-term outcome of Silverhawk assisted atherectomy for femoro-popliteal lesions according the TASC II classification: a single-center experience. Vasa. 2010;39(3):229–36.

    PubMed  Google Scholar 

  93. Chung SW, Sharafuddin MJ, Chigurupati R, Hoballah JJ. Midterm patency following atherectomy for infrainguinal occlusive disease: a word of caution. Ann Vasc Surg. 2008;22(3):358–65.

    Article  PubMed  Google Scholar 

  94. Yancey AE, Minion DJ, Rodriguez C, Patterson DE, Endean ED. Peripheral atherectomy in TransAtlantic InterSociety Consensus type C femoropopliteal lesions for limb salvage. J Vasc Surg. 2006;44(3):503.

    Article  PubMed  Google Scholar 

  95. Suri R, Wholey MH, Postoak D, Hagino RT, Toursarkissian B. Distal embolic protection during femoropopliteal atherectomy. Catheter Cardiovasc Interv. 2006;67(3):417–22.

    Article  PubMed  Google Scholar 

  96. Safian RD, Niazi K, Runyon JP, et al. Orbital atherectomy for infrapopliteal disease: device concept and outcome data for the OASIS trial. Catheter Cardiovasc Interv. 2009;73(3):406–12.

    PubMed  Google Scholar 

  97. Belli AM, Cumberland DC, Procter AE, Welsh CL. Follow-up of conventional angioplasty versus laser thermal angioplasty for total femoropopliteal artery occlusions: results of a randomized trial. J Vasc Interv Radiol. 1991;2(4):485–8.

    Article  PubMed  CAS  Google Scholar 

  98. Huppert PE, Duda SH, Helber U, Karsch KR, Claussen CD. Comparison of pulsed laser-assisted angioplasty and balloon angioplasty in femoropopliteal artery occlusions. Radiology. 1992;184(2):363–7.

    PubMed  CAS  Google Scholar 

  99. Scheinert D, Laird Jr JR, Schroder M, Steinkamp H, Balzer JO, Biamino G. Excimer laser-assisted recanalization of long, chronic superficial femoral artery occlusions. J Endovasc Ther. 2001;8(2):156–66.

    Article  PubMed  CAS  Google Scholar 

  100. Laird JR. Limitations of percutaneous transluminal angioplasty and stenting for the treatment of disease of the superficial femoral and popliteal arteries. J Endovasc Ther. 2006;13 Suppl 2:II30–40.

    PubMed  Google Scholar 

  101. Serino F, Cao Y, Renzi C, et al. Excimer laser ablation in the treatment of total chronic obstructions in critical limb ischaemia in diabetic patients. Sustained efficacy of plaque recanalisation in mid-term results. Eur J Vasc Endovasc Surg. 2010;39(2):234–8.

    Article  PubMed  CAS  Google Scholar 

  102. Dave RM, Patlola R, Kollmeyer K, et al. Excimer laser recanalization of femoropopliteal lesions and 1-year patency: results of the CELLO registry. J Endovasc Ther. 2009;16:665–75. doi:10.1583/09-2781.1.

    Article  PubMed  Google Scholar 

  103. Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg. 2006;31(6):627–36.

    Article  PubMed  CAS  Google Scholar 

  104. Gray BH, Sullivan TM, Childs MB, Young JR, Olin JW. High incidence of restenosis/reocclusion of stents in the percutaneous treatment of long-segment superficial femoral artery disease after suboptimal angioplasty. J Vasc Surg. 1997;25(1):74–83.

    Article  PubMed  CAS  Google Scholar 

  105. Saxon RR, Coffman JM, Gooding JM, Ponec DJ. Long-term patency and clinical outcome of the Viabahn stent-graft for femoropopliteal artery obstructions. J Vasc Interv Radiol. 2007;18(11):1341–9.

    Article  PubMed  Google Scholar 

  106. Duda SH, Bosiers M, Lammer J, et al. Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol. 2005;16(3):331–8.

    Article  PubMed  Google Scholar 

  107. Shah VM, Mintz GS, Apple S, Weissman NJ. Background incidence of late malapposition after bare-metal stent implantation. Circulation. 2002;106(14):1753–5. doi:10.1161/01.CIR.0000035239.90657.B1.

    Article  PubMed  CAS  Google Scholar 

  108. Moses JW, Carlier S, Moussa I. Lesion preparation prior to stenting. Rev Cardiovasc Med. 2004;5 Suppl 2:S16–21.

    PubMed  Google Scholar 

  109. Sabeti S, Schillinger M, Amighi J, et al. Primary patency of femoropopliteal arteries treated with nitinol versus stainless steel self-expanding stents: propensity score-adjusted analysis. Radiology. 2004;232(2):516–21.

    Article  PubMed  Google Scholar 

  110. Mewissen MW. Self-expanding nitinol stents in the femoropopliteal segment: technique and mid-term results. Tech Vasc Interv Radiol. 2004;7(1):2–5.

    Article  PubMed  Google Scholar 

  111. Schillinger M, Sabeti S, Loewe C, et al. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N Engl J Med. 2006;354(18):1879–88.

    Article  PubMed  CAS  Google Scholar 

  112. Krankenberg H, Schluter M, Steinkamp HJ, et al. Nitinol stent implantation versus percutaneous transluminal angioplasty in superficial femoral artery lesions up to 10 cm in length: the femoral artery stenting trial (FAST). Circulation. 2007;116(3):285–92. doi:10.1161/CIRCULATIONAHA.107.689141.

    Article  PubMed  CAS  Google Scholar 

  113. Laird JR, Katzen BT, Scheinert D, et al. Nitinol stent implantation versus balloon angioplasty for lesions in the superficial femoral artery and proximal popliteal artery/clinical perspective. Circ Cardiovasc Interv. 2010;3(3):267–76. doi:10.1161/CIRCINTERVENTIONS.109.903468.

    Article  PubMed  Google Scholar 

  114. Dick P, Wallner H, Sabeti S, et al. Balloon angioplasty versus stenting with nitinol stents in intermediate length superficial femoral artery lesions. Catheter Cardiovasc Interv. 2009;74(7):1090–5.

    Article  PubMed  Google Scholar 

  115. Scheinert D, Scheinert S, Sax J, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol. 2005;45(2):312–5. doi:10.1016/j.jacc.2004.11.026.

    Article  PubMed  Google Scholar 

  116. Bosiers M, Torsello G, Gissler HM, et al. Nitinol stent implantation in long superficial femoral artery lesions: 12-month results of the DURABILITY I study. J Endovasc Ther. 2009;16(3):261–9.

    Article  PubMed  Google Scholar 

  117. Rits J, van Herwaarden JA, Jahrome AK, Krievins D, Moll FL. The incidence of arterial stent fractures with exclusion of coronary, aortic, and non-arterial settings. Eur J Vasc Endovasc Surg. 2008;36(3):339–45.

    Article  PubMed  CAS  Google Scholar 

  118. Cragg AH, Dake MD. Percutaneous femoropopliteal graft placement. J Vasc Interv Radiol. 1993;4(4):455–63.

    Article  PubMed  CAS  Google Scholar 

  119. Lammer J, Dake MD, Bleyn J, et al. Peripheral arterial obstruction: prospective study of treatment with a transluminally placed self-expanding stent-graft. Radiology. 2000;217(1):95–104.

    PubMed  CAS  Google Scholar 

  120. Deutschmann HA, Schedlbauer P, Berczi V, Portugaller H, Tauss J, Hausegger KA. Placement of Hemobahn stent-grafts in femoropopliteal arteries: early experience and midterm results in 18 patients. J Vasc Interv Radiol. 2001;12(8):943–50.

    Article  PubMed  CAS  Google Scholar 

  121. Kedora J, Hohmann S, Garrett W, Munschaur C, Theune B, Gable D. Randomized comparison of percutaneous Viabahn stent grafts vs. prosthetic femoral-popliteal bypass in the treatment of superficial femoral arterial occlusive disease. J Vasc Surg. 2007;45(1):10–6; discussion 16.

    Article  PubMed  Google Scholar 

  122. Saxon RR, Dake MD, Volgelzang RL, Katzen BT, Becker GJ. Randomized, multicenter study comparing expanded polytetrafluoroethylene-covered endoprosthesis placement with percutaneous transluminal angioplasty in the treatment of superficial femoral artery occlusive disease. J Vasc Interv Radiol. 2008;19(6):823–32.

    Article  PubMed  Google Scholar 

  123. Duda SH, Pusich B, Richter G, et al. Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease: six-month results. Circulation. 2002;106(12):1505–9.

    Article  PubMed  CAS  Google Scholar 

  124. Duda SH, Bosiers M, Lammer J, et al. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: long-term results from the SIROCCO trial. J Endovasc Ther. 2006;13(6):701–10.

    Article  PubMed  Google Scholar 

  125. Dake MD, Scheinert D, Tepe G, et al. Nitinol Stents With Polymer-Free Paclitaxel Coating for Lesions in the Superficial Femoral and Popliteal Arteries Above the Knee: Twelve-Month Safety and Effectiveness Results From the Zilver PTX Single-Arm Clinical Study. Journal of Endovascular Therapy 2011;18: 613–623.

    Article  PubMed  Google Scholar 

  126. Biamino G, Schmidt A, Scheinert D. Treatment of SFA lesions with PLLA biodegradable stents: results of the PERSEUS study. J Endovasc Ther. 2005;12(Suppl (Abstracts: International Congress XVIII on Endovascular Interventions)): 1–5.

    Google Scholar 

  127. Bosiers M, Peeters P, D’Archambeau O, et al. AMS INSIGHT – absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis. Cardiovasc Intervent Radiol. 2009;32(3):424–35.

    Article  PubMed  Google Scholar 

  128. Clagett GP, Sobel M, Jackson MR, Lip GYH, Tangelder M, Verhaeghe R. Antithrombotic therapy in peripheral arterial occlusive disease. The seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126 Suppl 3:609S–26.

    Article  PubMed  CAS  Google Scholar 

  129. Allie DE, Hebert CJ, Lirtzman MD, et al. Combined glycoprotein IIb/IIIa and direct thrombin inhibition with eptifibatide and bivalirudin in the interventional treatment. Vasc Dis Manag. 2005; 2(6).

    Google Scholar 

  130. Mueller MR, Salat A, Stangl P, et al. Variable platelet response to low-dose ASA and the risk of limb deterioration in patients submitted to peripheral arterial angioplasty. Thromb Haemost. 1997;78(3):1003–7.

    PubMed  CAS  Google Scholar 

  131. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet. 1996;348(9038):1329–39.

    Google Scholar 

  132. Efficacy of oral anticoagulants compared with aspirin after infrainguinal bypass surgery (The Dutch Bypass Oral Anticoagulants or Aspirin Study): a randomised trial. Lancet. 2000;355(9201):346–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal J. Hoballah M.D., M.B.A., FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Sharafuddin, M.J., Amin, P.B., Nicholson, R.M., Hoballah, J.J. (2012). Femoropopliteal Endovascular Interventions. In: Hoballah, J., Lumsden, A. (eds) Vascular Surgery. New Techniques in Surgery Series, vol 6. Springer, London. https://doi.org/10.1007/978-1-4471-2912-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2912-7_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2911-0

  • Online ISBN: 978-1-4471-2912-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics